Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:14:56.112Z Has data issue: false hasContentIssue false

Largely enhanced thermoelectric properties of the binary-phased PbTe–Sb2Te3 nanocomposites

Published online by Cambridge University Press:  19 January 2012

Pengxian Lu*
Affiliation:
College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450007, People’s Republic of China
Xingbang Wang
Affiliation:
Zhengzhou Foreign Language School, Zhengzhou 450000, People’s Republic of China
Manman Lu
Affiliation:
Zhengzhou Foreign Language School, Zhengzhou 450000, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, the binary-phased PbTe–Sb2Te3 nanopowders were synthesized via a hydro/solvo-thermal route to improve the thermoelectric properties of PbTe matrix material. The single-phased PbTe powders exhibit pure nanoparticles, but the binary-phased PbTe–Sb2Te3 powders have a mixed morphology composed of nanospheres and nanoribbons. Our results suggest that the thermal conductivity of the binary-phased PbTe–Sb2Te3 bulks can be reduced significantly and the Seebeck coefficient can be increased obviously, although the electrical conductivity can also be decreased sharply. Consequently, a large figure of merit 0.85 at 623 K can be achieved for 0.7PbTe–0.3Sb2Te3 bulk, which is enhanced by about one time as compared to that of the single-phased PbTe bulk. This large enhancement could be attributed to the lowered carrier concentration and the increased interface scattering in the binary-phased PbTe–Sb2Te3 materials with a mixed morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).CrossRefGoogle ScholarPubMed
2.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).CrossRefGoogle ScholarPubMed
3.Mahan, G.D.: Good thermoelectrics. Solid State Phys. 51, 81 (1997).CrossRefGoogle Scholar
4.Fano, V.: in CRC Handbook of Thermoelectrics, edited byRowe, D.M. (CRC Press, Boca Raton, FL, 1995), pp. 257266.Google Scholar
5.Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).CrossRefGoogle ScholarPubMed
6.Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993).CrossRefGoogle ScholarPubMed
7.Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., and Koga, T.: Low dimensional thermoelectric materials. Phys. Solid State 41, 679 (1999).CrossRefGoogle Scholar
8.Heremans, J.P., Thrush, C.M., and Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004).CrossRefGoogle Scholar
9.Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).Google Scholar
10.Barabash, S.V., Ozolins, V., and Wolverton, C.: First-principles theory of competing order types, phase separation, and phonon Spectra in thermoelectric AgPbmSbTem+2 alloys. Phys. Rev. Lett. 101, 155704 (2008).Google Scholar
11.Lin, H., Božin, E.S., Billinge, S.J.L., Quarez, E., and Kanatzidis, M.G.: Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2. Phys. Rev. B 72, 174113 (2005).Google Scholar
12.Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).Google Scholar
13.Zhao, L.D., Zhang, B.P., Liu, W.S., and Li, J.F.: Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound. J. Appl. Phys. 105, 023704 (2009).Google Scholar
14.Toprak, M.S., Stiewe, C., Platzek, D., Williams, S., Bertini, L., Müller, E., Gatti, C., Zhang, Y., Rowe, M., and Muhammed, M.: The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 14, 1189 (2004).Google Scholar
15.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Bai, S.Q., Pei, Y.Z., Li, X.Y., and Goto, T.: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).CrossRefGoogle Scholar
16.Alboni, P.N., Ji, X., He, J., Gothard, N., and Tritt, M.T.: Thermoelectric properties of La0.9CoFe3Sb12–CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 113707 (2008).CrossRefGoogle Scholar
17.Li, H., Tang, X.F., Su, X.L., and Zhang, Q.Q.: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92, 202114 (2008).Google Scholar
18.Zhou, W.W., Zhu, J.X., Li, D., Hng, H.H., Boey, F.Y.C., Ma, J., Zhang, H., and Yan, Q.Y.: Binary-phased nanoparticles for enhanced thermoelectric properties. Adv. Mater. 21, 3196 (2009).CrossRefGoogle Scholar
19.He, Z.M. and Stiewe, C., Platzek, D., Karpinski, G., Müller, E., Li, S.H., Toprak, M. and Muhammed, M.: Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007).CrossRefGoogle Scholar
20.Katsuyama, S., Watanabe, M., Kuroki, M., Maehata, T., and Ito, M.: Effect of NiSb on the thermoelectric properties of skutterudite CoSb3. J. Appl. Phys. 93, 2758 (2003).CrossRefGoogle Scholar
21.Katsuyama, S., Kanayama, Y., Ito, M., Majima, K., and Nagai, H.: Thermoelectric properties of CoSb3 with dispersed FeSb2 particles. J. Appl. Phys. 88, 3484 (2000).Google Scholar
22.Bergman, D.J. and Felb, L.G.: Enhancement of thermoelectric power factor in composite thermoelectrics. J. Appl. Phys. 85, 8205 (1999).Google Scholar
23.Su, T.C., Zhu, P.W., Ma, H.A., Rend, G.Z., Guo, J.G., Iami, Y., and Jia, X.P.: Electrical transport and thermoelectric properties of PbTe doped with Sb2Te3 prepared by high-pressure and high-temperature. J. Alloy. Comp. 422, 328 (2006).Google Scholar
24.Su, T.C., Zhu, P.W., Ma, H.A., Ren, G.Z., Chen, L.X., Guo, W.L., Iami, Y., and Jia, X.P.: Electrical transport and high thermoelectric properties of PbTe doped with Bi2Te3 prepared by HPHT. Solid State Commun. 138, 580 (2006).Google Scholar
25.Lu, P.X., Wu, F., Han, H.L., Wang, Q., Shen, Z.G., and Hu, X.: Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite. J. Alloy. Comp. 505, 255 (2010).Google Scholar
26.Nolas, G.S., Kaeser, M., Littleton, R.T., and Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
27.Klemens, P.G.: Electrical resistivity of inhomogeneous alloys. J. Appl. Phys. 70, 4322 (1991).CrossRefGoogle Scholar
28.Ziman, J.M.: Principles of the Theory of Solids (Cambridge University, Cambridge, MA, 1972).CrossRefGoogle Scholar
29.Li, H., Cai, K.F., Wang, H.F., Wang, L., Yin, J.L., and Zhou, C.W.: The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. J. Solid State Chem. 182, 869 (2009).CrossRefGoogle Scholar
30.Cutler, M., Leavy, J.F., and Fitzpatrick, R.L.: Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143 (1964).CrossRefGoogle Scholar
31.Goldsmid, H.J.: Electronic refrigeration (Pion Press, London, UK, 1986).Google Scholar
32.Su, T.C., Jia, X.P., Ma, H.G., Guo, J.G., Jiang, Y.P., Dong, N., Deng, L., Zhao, X.B., Zhu, T.J., and Wei, C.: Thermoelectric properties of nonstoichiometric PbTe prepared by HPHT. J. Alloy. Comp. 468, 410 (2009).CrossRefGoogle Scholar
33.Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Harcourt, Brace, New York, 1976).Google Scholar
34.McGuire, M.A., Malik, A.S., and DiSalvo, F.J.: Effects of high-pressure high-temperature treatment on the thermoelectric properties of PbTe. J. Alloy. Comp. 460, 8 (2008).CrossRefGoogle Scholar