Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T11:43:53.621Z Has data issue: false hasContentIssue false

Kinetic study of (Bi,Pb)2Sr2Ca2Cu3O10+x phase formation in KCl flux

Published online by Cambridge University Press:  31 January 2011

Sergey Lee
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Ayako Yamamoto
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Setsuko Tajima
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Get access

Abstract

The kinetics of (Bi,Pb)2Sr2Ca2Cu3O10+x phase formation in KCl flux was studied, and kinetic analysis using the Avrami relation for isothermal phase transformation gave the Avrami exponent n = 2.5 at 855 °C for the whole process of (Bi,Pb)-2223 phase formation. The estimated value of the activation energy Ea = 150 kJ/mol for the formation of (Bi,Pb)-2223 phase at 845–855 °C is the lowest among the previously reported values. The low value of activation energy explains the fast formation of single-phase (Bi,Pb)-2223 powder in the KCl flux.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Sumiyama, A., Yoshitomi, T., Endo, H., Tsuchiya, J., Kijima, N., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L542 (1988).CrossRefGoogle Scholar
3.Kijima, N., Endo, H., Tsuchiya, J., Sumiyama, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L821 (1988).Google Scholar
4.Majewski, P., Hettich, B., Schulze, K., and Petzow, G., Adv. Mater. 3, 488 (1991).CrossRefGoogle Scholar
5.Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., and LePage, Y., Phys. Rev B 38, 8885 (1988).CrossRefGoogle Scholar
6.Endo, U., Koyama, S., and Kawa, T., Jpn. J. Appl. Phys. 27, L1476 (1988).CrossRefGoogle Scholar
7.Strobel, P., Korczak, W., Hodeau, J-L., and Tholence, J-L., Physica C 161, 155 (1989).CrossRefGoogle Scholar
8.Pekala, M., Bougrine, H., Lada, T., Morawski, A., and Ausloos, M., Supercond. Sci. Technol. 8, 726 (1995).CrossRefGoogle Scholar
9.M’Hamdi, E.M. and Lacour, C., Ann. Chim. Fr. 17, 421 (1992); Ann. Chim. Fr. 18, 139 (1993).Google Scholar
10.Shi, D., Tang, M., Boley, M.S., Hash, M., Vandervoort, K., Claus, H., and Lwin, Y.N., Phys. Rev. B 40, 2247 (1989).CrossRefGoogle Scholar
11.Sastry, P.V.P.S.S. and West, A.R., Physica C 232, 63 (1994).CrossRefGoogle Scholar
12.Sastry, P.V.P.S.S. and West, A.R., Physica C 250, 87 (1995).CrossRefGoogle Scholar
13.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
14.Statt, B.W., Wang, Z., Lee, M.J., Yakhmi, J.V., Camargo, P.C. De, Major, J.F., and Rutter, J.W., Physica C 156, 251 (1988).CrossRefGoogle Scholar
15.Shi, D., Tang, M., Vandervoort, K., and Claus, H., Phys. Rev. B 39, 9091 (1989).CrossRefGoogle Scholar
16.Nobumasa, H., Shimizu, K., Kitano, Y., and Kawa, T., Jpn. J. Appl. Phys. 27, L846 (1988).CrossRefGoogle Scholar
17.Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
18.McManus-Driscoll, J.L. and Bravman, J.C., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
19.Cloots, R., Stassen, S., Rulmont, A., Godelaine, P.A., Diko, P., Duvigneaud, P.H., and Ausloos, M., J. Cryst. Growth 135, 496 (1994).CrossRefGoogle Scholar
20.Grivel, J.C. and Flukiger, R., Supercond. Sci. Technol. 11, 288 (1998).CrossRefGoogle Scholar
21.Kanai, T., Kamo, T., and Matsuda, S.P., Jpn. J. Appl. Phys. 28, L2188 (1989).CrossRefGoogle Scholar
22.Sung, Y.S. and Hellstrom, E.E., J. Am. Ceram. Soc. 78, 2003 (1995).CrossRefGoogle Scholar
23.Carter, W.L., Riley, G.N., Luo, J.S., Merchant, N., and Maroni, V.A., Appl. Supercond. 1, 1523 (1993).CrossRefGoogle Scholar
24.Guo, Y.C., Liu, H.K., and Dou, S.X., 8, 2187 (1993).Google Scholar
25.Zhu, W. and Nicholson, P., J. Mater. Res. 7, 38 (1992).CrossRefGoogle Scholar
26.Grivel, J.C. and Flukiger, R., J. Alloys Compd. 235, 53 (1996).CrossRefGoogle Scholar
27.Luo, J.S., Merchant, N., Escorcia-Aparicio, E., Maroni, V.A., Gruen, D.M., and Tani, B.S., IEEE Trans. Appl. Supercond. 3, 972 (1993).CrossRefGoogle Scholar
28.Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Carter, W.L., and Riley, G.N. Jr., Appl. Supercond. 1, 101 (1993).CrossRefGoogle Scholar
29.Zhu, W., Kuo, C.K., and Nicholson, P., J. Mater. Res. 14, 4143 (1999).CrossRefGoogle Scholar
30.Rouessac, V., Nhien, S., Wang, J., and Desgardin, G., Physica C 282–287, 511 (1997).CrossRefGoogle Scholar
31.Grivel, J.C. and Flukiger, R., J. Alloys Compd. 241, 127 (1996).CrossRefGoogle Scholar
32.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
33.Lee, S., Yamamoto, A., and Tajima, S., Physica C 357–360, 341 (2001).CrossRefGoogle Scholar
34.Rao, C.N.R. and Rao, K.J., Phase Transitions in Solids, (McGraw-Hill, New York and London, U.K., 1978).Google Scholar
35.Danusantoso, J. and Chaki, T.K., Supercond. Sci. Technol. 4, 509 (1991).CrossRefGoogle Scholar
36.High, Y.E., Feng, Y., Sung, Y.S., Hellstrom, E.E., and Larbalestier, D.C., Physica C 222, 81 (1994).CrossRefGoogle Scholar
37.Jang, H.M., Moon, J.H., and Shin, H.J., J. Mater. Res. 6, 916 (1991).CrossRefGoogle Scholar
38.Arendt, R., Rosolowski, J.H., and Szymaszek, J.W., Mater. Res. Bull. 14, 703 (1979).CrossRefGoogle Scholar