Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T21:54:26.033Z Has data issue: false hasContentIssue false

Kinetic and characterization studies of the formation of barium monomolybdate in equimolar powder mixture of BaCO3 and MoO3

Published online by Cambridge University Press:  03 March 2011

Latifa A. Al-Hajji
Affiliation:
Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969-Safat, 13060-Kuwait
Muhammad A. Hasan
Affiliation:
Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969-Safat, 13060-Kuwait
Mohamed I. Zaki*
Affiliation:
Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The formation of barium monomolybdate (BaMoO4) in inequimolar powder mixtures of BaCO3 and MoO3 was examined under isothermal and nonisothermal conditions upon heating in air at 25–1200 °C, using thermogravimetry. Concurrence of the observed mass loss (due to the release of CO2) to the occurrence of the formation reaction was evident. Accordingly, the extent of reaction (x) was determined as a function of time (t) or temperature (T). The x-t and x-T data thus obtained were processed using a well-established mathematical apparatus and methods to characterize the nature of the reaction rate-determining step and derive isothermal and nonisothermal kinetic parameters (rate constant, frequency factor, reaction order, and activation energy). Moreover, the reaction mixture quenched at various temperatures (450–575 °C) in the reaction course was analyzed by various spectroscopic (x-ray diffractometry, infrared spectroscopy, and laser Raman spectroscopy) and microscopic (scanning electron microscopy and x-ray energy dispersive spectroscopy) techniques for material characterization. The results obtained indicated that the reaction rate may be controlled by unidirectional diffusion of MoO3 species through the product layer (BaMoO4), which was implied to form on the barium carbonate particles. The nonisothermally determined activation energy (156 kJ/mol) was found to be close to the isothermally determined one (164–166 kJ/mol)

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chemistry of Advanced Materials, edited by Rao, C.N.R. (Blackwell Scientific, London, U.K., 1993).Google Scholar
2.Dann, S.E., Reactions and Characterization of Solids (R. Soc. Chem., Cambridge, U.K., 2000), pp. 150–170.CrossRefGoogle Scholar
3.Schmalzried, H., Chemical Kinetics of Solids (VCH-Verlag, Weinheim, Germany, 1995).CrossRefGoogle Scholar
4.Brown, M.E., Dollimore, D., and Galwey, A.K., in Comprehensive Chemical Kinetics: Reactions in the Solid State, edited by Bamford, C.H. and Tipper, C.F.H. (Elsevier, Amsterdam, The Netherlands, 1980), Vol. 22.Google Scholar
5.Galwey, A.K. and Brown, M.E., Thermal Decomposition of Ionic Solids (Elsevier, Amsterdam, The Netherlands, 1999).Google Scholar
6.Boldyreva, E.V., Thermochim. Acta 110, 107 (1987).Google Scholar
7.Bylichkina, T.I., Soleva, L.I., Pobedimskaya, E.A., Porai, N.A.-Koshits, and Belov, N.V., Kristallografiya, 15, 165 (1970).Google Scholar
8.Nassif, V., Carbonio, R.E., and Alonso, J.A., J. Solid State Chem. 146, 266 (1999).CrossRefGoogle Scholar
9.Hasan, M.A., Zaki, M.I., Kumari, K., and Pasupulety, L., Thermochim. Acta, 320, 23 (1998).CrossRefGoogle Scholar
10.Yoon, Y-S., Fujikawa, N., Ueda, W., Moroka, Y., and Lee, K-W., Catal. Today 24, 327 (1995).CrossRefGoogle Scholar
11.Ikeda, Y., Ueda, K., Saito, K., Yonehara, K., and Ono, T., JP Patent No. 03114539 (15 May 1991); Appl. No. 1990–154036 (14 June 1990).Google Scholar
12.Lin, O., CN Patent No. 1291594 (18 April 2001); Appl. No. 1999- 114480 (8 October 1999).Google Scholar
13.Ding, L. and Wang, S., CN Patent No. 1236755 (1 December 1999); Appl. No. 1998–111314 (25 May 1998).Google Scholar
14.Robitaille, D.R., Vukasovich, M.S., and Barry, H.F., US Patent No. 3 969 127 (13 July 1976); Appl. No. 1975–556593 (10 March 1975).Google Scholar
15.Schimek, G.L., Nagaki, D.A., and McCarley, R.E., Inorg. Chem. 33, 1259 (1994).CrossRefGoogle Scholar
16.Lii, K.H., Wang, C.C., and Wang, S.L., J. Solid State Chem. 77, 407 (1988).CrossRefGoogle Scholar
17.Sing, N.K. and Sharma, H., Acta Ciencia Indica 24, 69 (1998).Google Scholar
18.Lam, R.U.E. and Blasse, G., J. Chem. Phys. 71, 3549 (1979).CrossRefGoogle Scholar
19.Bouchard, G.H., Jr., and Sienko, M.J., Inorg. Chem. 7, 441 (1968).Google Scholar
20.Hayashi, M., Sakaguchi, H., Takai, S., and Esaka, T., Solid State Ionics 140, 71 (2001).CrossRefGoogle Scholar
21.Grigorieva, T.F., Vorsina, I.A., Barinova, A.P., Korchagini, M.A., and Lyokhov, N.Z., J. Mater. Synth. Proc. 8, 339 (2000).CrossRefGoogle Scholar
22.Grigorieva, T.F., Vorsina, I.A., Korchagin, M.A., Barinova, A.P., and Lyakhov, N.Z., Zh. Prikl. Khim. 73, 1786 (2000).Google Scholar
23.Xia, C.T., Fuenzalida, V.M., and Zarate, R.A., J. Alloys Compd. 316, 250 (2001).Google Scholar
24.Cho, W-S. and Yoshimura, M., Solid State Ionics, 100, 143 (1997).Google Scholar
25.Li, D., Ye, X., and Xin, X., Huatue Yanjiu Yu Yingyong 11, 415 (1999).Google Scholar
26.Meullemeestre, J., Bull. Soc. Chim. Fr. 3–4, 95 (1978).Google Scholar
27.Goel, S.P. and Mehrotra, P.N., Thermochim. Acta 84, 287 (1985).CrossRefGoogle Scholar
28.Zhukovskii, V.M., Veksler, S.F., and Borzikhina, G.M., Akad. Nauk SSSR 32, 49 (1975).Google Scholar
29.Hulbert, S.F. and Klawitter, J.J., J. Am. Ceram. Soc. 50, 484 (1967).CrossRefGoogle Scholar
30.Ozawa, T., Bull. Chem. Soc. Jpn. 38, 1881 (1965); J. Therm. Anal. 2, 301 (1970); Thermochim. Acta 203, 159 (1992).CrossRefGoogle Scholar
31.Zaki, M.I. and Fahim, R.B., Powder Technol. 33, 161 (1982).Google Scholar
32.Glemser, O. and van, R.Hässeler, Z. Anorg. Allg. Chem. 316, 168 (1962).CrossRefGoogle Scholar
33.Miller, F.A., Carlson, G.L., Bentley, F.F., and Jones, W.H., Spectrochim. Acta 16, 135 (1960).Google Scholar
34.Knöinger, H. and Jeziorowski, H., J. Phys. Chem. 82, 2002 (1987).CrossRefGoogle Scholar
35. JCPDS No. 5–378 (International Center for Diffraction Data, Newton Square, PA, 1953).Google Scholar
36.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (J. Wiley & Sons, New York, 1974), pp. 618–706.Google Scholar
37.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed. (J. Wiley & Sons, Chichester, U.K., 1977), pp. 180–184.Google Scholar
38.Nyquist, R.A. and Kagel, R.O., Infrared Spectra of Inorganic Compounds (Academic Press, New York, 1971).CrossRefGoogle Scholar
39.Degen, I.A., Tables of Characteristic Group Frequencies for the Interpretation of Infrared and Raman Spectra (Acolyte, Harrow Weald, 1997).Google Scholar
40.McDevitt, N.T. and Baun, W.L., Spectrochim. Acta 200, 799 (1964).CrossRefGoogle Scholar