Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T11:49:03.209Z Has data issue: false hasContentIssue false

Isothermal and thermo-mechanical fatigue behavior of 16Mo3 steel coated with high-velocity oxy-fuel sprayed nickel-base alloy under uniaxial as well as biaxial-planar loading

Published online by Cambridge University Press:  21 September 2017

Dirk Kulawinski*
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Markus Hoffmann
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Tim Lippmann
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Götz Lamprecht
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Anja Weidner
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Sebastian Henkel
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
Horst Biermann
Affiliation:
Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The ferritic steel 16Mo3 coated with the nickel-base alloy IN625mod by high-velocity oxy-fuel (HVOF) spraying was investigated under uniaxial and biaxial fatigue loading at 200 and 500 °C. Furthermore, bulk HVOF-sprayed specimens of the coating material IN625mod were also investigated under uniaxial isothermal fatigue loading at 200 and 500 °C. Moreover, the thermo-mechanical fatigue behavior of 16Mo3 was studied under in-phase (IP) and out-of-phase (OP) loading between 200 and 500 °C. The fatigue lives of the bulk coating and the compound material are presented. In particular, the thermo-mechanical OP loading leads to a strong reduction of the lifetimes compared to the IP loading. A conservative estimation of the fatigue lives of the thermo-mechanical loading can be given by isothermal tests at 500 °C. The comparison of the uniaxial loading with the biaxial loading cases shows reasonable coincidence by using the distortion energy hypothesis according to von Mises.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present Address: Siemens AG, Rheinstraβe 100, Mülheim an der Ruhr 45468, Germany.

c)

Present Address: IMA Materialforschung und Anwendungstechnik GmbH, Wilhelmine-Reichard-Ring 4, Dresden 01109, Germany.

d)

Present Address: Compound Extrusion Products GmbH Freiberg, Maxim-Gorki-Straße 31, Freiberg 09599, Germany.

e)

Present Address: PWT—Prüf-und Werkstofftechnik, Alexanderstr. 18, Heidenheim 89522, Germany.

Contributing Editor: Mathias Göken

References

REFERENCES

Huttunen-Saarivirta, E., Antonov, M., Veinthal, R., Tuiremo, J., Mkel, K., and Siitonen, P.: Influence of particle impact conditions and temperature on erosionoxidation of steels at elevated temperatures. Wear 272(1), 159175 (2011).CrossRefGoogle Scholar
Ciofu, F., Nioaţă, A., Mihuţ, N., and Rădulescu, C.: The influence of some corrosive environments on the working equipment of the heat exchangers. Fiability & Durability/Fiabilitate si Durabilitate, 1, 4650 (2014).Google Scholar
Rozmus-Górnikowska, M., Blicharski, M., Kusińsk, J., Kuslnski, L., and Marszyck, M.: Influence of boiler pipe cladding techniques on their microstructure and properties. Arch. Metall. Mater. 58(4), 10931096 (2013).CrossRefGoogle Scholar
Rozmus-Górnikowska, M., Cieniek, Ł., Blicharski, M., and Kusiński, J.: Microstructure and microsegregation of an Inconel 625 weld overlay produced on steel pipes by the cold metal transfer technique. Arch. Metall. Mater. 59(3), 10811084 (2014).Google Scholar
Bulatovic, S., Aleksic, V., and Milovic, L.: Failure of steam line causes determined by NDT testing in power and heating plants. Fract. Struct. Integr. 26, 4148 (2013).Google Scholar
Jauhiainen, P., Yli-Olli, S., Nyholm, A., Auerkari, P., Salonen, J., Lehtinen, O., and Mäkinen, S.: Impact of oxidation on creep life of superheaters and reheaters. In Proceedings of the International ECCC Creep Conference, Shibli, T.A. and Holdsworth, S.R., eds. (2009); pp. 320328.Google Scholar
Psyllaki, P.P., Pantazopoulos, G., and Lefakis, H.: Metallurgical evaluation of creep-failed superheater tubes. Eng. Failure Anal. 16(5), 14201431 (2009).Google Scholar
Ergün, H., Aydinol, K., Öztürk, T., and Doruk, M.: Design of a high temperature erosion apparatus for testing of boiler tubes. Turk. J. Eng. Environ. Sci. 37(2), 178185 (2013).Google Scholar
Kriegel, M., Fabrichnaya, O., and Seifert, H.J.: Thermodynamische Simulation für Werkstoffe zum Schutz gegen die Dampferzeugerkorrosion. In Dampferzeugerkorrosion, Eisenblätter, A., Starke, R., and Zanler, T., eds. (Saxonia, Freidburg, Germany, 2009); pp. 189200.Google Scholar
Lawton, C.W.: High-temperature low-cycle fatigue: A summary of industry and code work. Exp. Mech. 8(6), 257266 (1968).CrossRefGoogle Scholar
Mayer, H., Stark, H.L., and Ambrose, S.: Review of fatigue design procedures for pressure vessels. Int. J. Pressure Vessels Piping 77(13), 775781 (2000).Google Scholar
Ellyin, F. and Wolodko, J.D.: Testing facilities for multiaxial loading of tubular specimens. ASTM Spec. Tech. Publ. 1280, 724 (1997).Google Scholar
Bocher, L., Delobelle, P., Robinet, P., and Feaugas, X.: Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension–torsion-internal and external pressure. Int. J. Plast. 17(11), 14911530 (2001).Google Scholar
Itoh, T. and Bao, Z.: Low cycle fatigue lives under multiaxial non-proportional loading. In Seventh International Conference on Low Cycle Fatigue, Beck, T. and Charkaluk, E., eds. (DVM, Berlin, Germany, 2013); pp. 247252.Google Scholar
Bonnand, V., Chaboche, J.L., Gomez, P., Kanouté, P., and Pacou, D.: Investigation of multiaxial fatigue in the context of turboengine disc applications. Int. J. Fatigue 33(8), 10061016 (2011).Google Scholar
Zhang, D., Harris, S.J., and McCartney, D.G.: Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings. Mater. Sci. Eng., A 344(12), 4556 (2003).CrossRefGoogle Scholar
Boudi, A.A., Hashmi, M.S.J., and Yilbas, B.S.: HVOF coating of Inconel 625 onto stainless and carbon steel surfaces: Corrosion and bond testing. J. Mater. Process. Technol. 155–156, 20512055 (2004). Proceedings of the International Conference on Advances in Materials and Processing Technologies: Part 2.CrossRefGoogle Scholar
Al-Fadhli, H.Y., Stokes, J., Hashmi, M.S.J., and Yilbas, B.S.: HVOF coating of welded surfaces: Fatigue and corrosion behaviour of stainless steel coated with Inconel-625 alloy. Surf. Coat. Technol. 200(16–17), 49044908 (2006).Google Scholar
Al-Fadhli, H.Y., Stokes, J., Hashmi, M.S.J., and Yilbas, B.S.: The erosion corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed Inconel-625 coatings on different metallic surfaces. Surf. Coat. Technol. 200(20–21), 57825788 (2006).Google Scholar
Ahmed, N., Bakare, M.S., McCartney, D.G., and Voisey, K.T.: The effects of microstructural features on the performance gap in corrosion resistance between bulk and HVOF sprayed Inconel 625. Surf. Coat. Technol. 204(14), 22942301 (2010).Google Scholar
Boudi, A.A., Hashmi, M.S.J., and Yilbas, B.S.: ESEM evaluation of Inconel-625 thermal spray coating (HVOF) onto stainless steel and carbon steel post brine exposure after tensile tests. J. Mater. Process. Technol. 173(1), 4452 (2006).CrossRefGoogle Scholar
Bonora, R.G., Voorwald, H.J.C., Cioffi, M.O.H., Junior, G.S., and Santos, L.F.V.: Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Eng. 2(1), 16171623 (2010).CrossRefGoogle Scholar
Puchi Cabrera, E.S., Berrios-Ortiz, J.A., Da-Silva, J., and Nunes, J.: Fatigue behavior of a 4140 steel coated with a Colmonoy 88 alloy applied by HVOF. Surf. Coat. Technol. 172(23), 128138 (2003).Google Scholar
Puchi-Cabrera, E.S., Staia, M.H., Lesage, J., Chicot, D., La Barbera-Sosa, J.G., and Ochoa-Prez, E.A.: Fatigue performance of a SAE 1045 steel coated with a Colmonoy 88 alloy deposited by HVOF thermal spraying. Surf. Coat. Technol. 201(5), 20382045 (2006).CrossRefGoogle Scholar
Puchi-Cabrera, E.S., Staia, M.H., Ortiz-Mancilla, M.J., La Barbera-Sosa, J.G., Ochoa Prez, E.A., Villalobos-Gutirrez, C., Bellayer, S., Traisnel, M., Chicot, D., and Lesage, J.: Fatigue behavior of a SAE 1045 steel coated with Colmonoy 88 alloy deposited by HVOF thermal spray. Surf. Coat. Technol. 205(4), 11191126 (2010). Proceedings of the fourth workshop RIPT (Les Rencontres Internationales sur la Projection Thermique) and the third workshop on Suspension and Solution Thermal Spraying (S2TS).CrossRefGoogle Scholar
Padilla, K., Velsquez, A., Berrios, J.A., and Puchi Cabrera, E.S.: Fatigue behavior of a 4140 steel coated with a NiMoAl deposit applied by HVOF thermal spray. Surf. Coat. Technol. 150(2–3), 151162 (2002).Google Scholar
Souza, R.C., Voorwald, H.J.C., and Cioffi, M.O.H.: Fatigue strength of HVOF sprayed Cr3C2–25NiCr and WC–10Ni on AISI 4340 steel. Surf. Coat. Technol. 203(3–4), 191198 (2008).Google Scholar
Kowalewski, R. and Mughrabi, H.: Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy. Mater. Sci. Eng., A 247(1–2), 295299 (1998).CrossRefGoogle Scholar
Grube, F., Affeldt, E.E., and Mughrabi, H.: Thermomechanical fatigue behavior of an aluminide-coated monocrystalline Ni-base superalloy. In Thermomechanical Fatigue Behavior of Materials, Vol. 4 (ASTM International, 2003); pp. 164179.CrossRefGoogle Scholar
Zhou, Y.C. and Hashida, T.: Thermal fatigue failure induced by delamination in thermal barrier coating. Int. J. Fatigue 24(2–4), 407417 (2002).CrossRefGoogle Scholar
Chen, Z.B., Huang, Z.W., Wang, Z.G., and Zhu, S.J.: Failure behavior of coated nickel-based superalloy under thermomechanical fatigue. J. Mater. Sci. 44(23), 62516257 (2009).Google Scholar
Chen, Z.B., Wang, Z.G., and Zhu, S.J.: Thermomechanical fatigue behavior of an air plasma sprayed thermal barrier coating system. Mater. Sci. Eng., A 528(29–30), 83968401 (2011).Google Scholar
Giolli, C., Scrivani, A., Rizzi, G., Borgioli, F., Bolelli, G., and Lusvarghi, L.: Failure mechanism for thermal fatigue of thermal barrier coating systems. J. Therm. Spray Technol. 18(2), 223230 (2009).CrossRefGoogle Scholar
Sadowski, T. and Golewski, P.: Cracks path growth in turbine blades with TBC under thermo-mechanical cyclic loadings. Fract. Integr. Struct. 35, 492499 (2016).Google Scholar
Stekovic, S.: Low cycle fatigue and thermo-mechanical fatigue of uncoated and coated nickel-base superalloys. Ph.D. thesis, Institutionen för ekonomisk och industriell utveckling, 2007.Google Scholar
Brodin, H., Jinnestrand, M., Johansson, S., and Sjöström, S.: Thermal Barrier Coating Fatigue Life Assessment; Technical Report; Siemens AG, 2006.Google Scholar
Nützel, R., Affeldt, E., and Göken, M.: Damage evolution during thermo-mechanical fatigue of a coated monocrystalline nickel-base superalloy. Int. J. Fatigue 30(2), 313317 (2008).Google Scholar
Fleury, E. and Ha, J.S.: Thermomechanical fatigue behaviour of nickel base superalloy IN738LC part 2—Lifetime prediction. Mater. Sci. Technol. 17(9), 10871092 (2001).Google Scholar
Huang, Z.W., Wang, Z.G., Zhu, S.J., Yuan, F.H., and Wang, F.G.: Effect of HVOF sprayed MCrAlY coating on thermomechanical and isothermal fatigue life of superalloy M963. In Key Engineering Materials, Vol. 373 (Trans Tech Publications, 2008); pp. 2326.Google Scholar
Okazaki, M.: High-temperature strength of Ni-base superalloy coatings. Sci. Technol. Adv. Mater. 2(2), 357366 (2001).Google Scholar
Hoffmann, M. and Biermann, H.: Static and cyclic deformation behavior of the ferritic steel 16Mo3 under monotonic and cyclic loading at high temperatures. Steel Res. Int. 83(7), 631636 (2012).Google Scholar
Kulawinski, D., Hoffmann, M., Lippmann, T., Lamprecht, G., Henkel, S., and Biermann, H.: Fatigue behavior of 16Mo3 at elevated temperatures under uniaxial as well as biaxial-planar loading. Fatigue Fract. Eng. Mater. Struct. (2016).Google Scholar
Soltysiak, S., Selent, M., Roth, S., Abendroth, M., Hoffmann, M., Biermann, H., and Kuna, M.: High-temperature small punch test for mechanical characterization of a nickel-base super alloy. Mater. Sci. Eng., A 614, 259263 (2014).CrossRefGoogle Scholar
Selent, M., Soltysiak, S., Roth, S., Abendroth, M., Hoffmann, M., and Kuna, M.: Mechanical characterisation of a thermally sprayed nickel-base superalloy by means of the high temperature small punch test. In 3rd International Conference SSTT (Small Sample Test Techniques) (2014); pp. 98111.Google Scholar
Andersson, H.C.M. and Sjöström, E.: Thermal gradients in round tmf specimens. Int. J. Fatigue 30(2), 391396 (2008).Google Scholar
Beck, T., Hähner, P., Kühn, H-J., Rae, C., Affeldt, E.E., Andersson, H., Köster, A., and Marchionni, M.: Thermo-mechanical fatigue—The route to standardisation (“TMF-standard” project). Mater. Corros. 57(1), 5359 (2006).Google Scholar
Hähner, P., Affeldt, E., Beck, T., Klingelhöffer, H., Loveday, M., and Rinaldi, C.: Validated Code-of-Practice for Strain-Controlled Thermo-Mechanical Fatigue Testing; EC-Report EUR 22281 EN (2006).Google Scholar
Hähner, P., Rinaldi, C., Bicego, V., Affeldt, E., Brendel, T., Andersson, H., Beck, T., Klingelhöffer, H., Kühn, H.J., Köster, A., Loveday, M., Marchionni, M., and Rae, C.: Research and development into a european code-of-practice for strain-controlled thermo-mechanical fatigue testing. Int. J. Fatigue 30(2), 372381 (2008).CrossRefGoogle Scholar
Kulawinski, D., Weidner, A., Henkel, S., and Biermann, H.: Isothermal and thermo-mechanical fatigue behavior of the nickel base superalloy waspaloy under uniaxial and biaxial-planar loading. Int. J. Fatigue 81, 2136 (2015).CrossRefGoogle Scholar
Kulawinski, D., Henkel, S., Holländer, D., Thiele, M., Gampe, U., and Biermann, H.: Fatigue behavior of the nickel-base superalloy Waspaloy under proportional biaxial-planar loading at high temperature. Int. J. Fatigue 67, 212219 (2014).Google Scholar
Pascoe, K. and Villiers, J.: Low cycle fatigue of steels under biaxial straining. J. Strain Anal. Eng. 2(2), 117126 (1967).Google Scholar
Kulawinski, D., Nagel, K., Henkel, S., Hübner, P., Fischer, H., Kuna, M., and Biermann, H.: Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng. Fract. Mech. 78(8), 16841695 (2011).Google Scholar
Kulawinski, D., Ackermann, S., Seupel, A., Lippmann, T., Henkel, S., Kuna, M., Weidner, A., and Biermann, H.: Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mater. Sci. Eng., A 642, 317329 (2015).Google Scholar
Kulawinski, D., Ackermann, S., Glage, A., Henkel, S., and Biermann, H.: Biaxial low cycle fatigue behavior and martensite formation of a metastable austenitic cast TRIP steel under proportional loading. Steel Res. Int. 82(9), 11411148 (2011).Google Scholar
Kulawinski, D.: Biaxial-planare isotherme und thermo-mechanische Ermüdung an polykristallinen Nickelbasis-Superlegierungen. Ph.D. thesis, TU Bergakademie Freiberg, Berlin, Germany, 2015.Google Scholar
Bannantine, J.A., Comer, J.J., and Handrock, J.L.: Fundamentals of Metal Fatigue Analysis (Prentice Hall, Uppder Saddle River, New Jersey, 1989).Google Scholar
Sonsino, C.M. and Grubisic, V.: Kurzzeitschwingfestigkeit von duktilen Stählen unter mehrachsiger Beanspruchung. Materialwiss. Werkstofftech. 15, 378386 (1984).Google Scholar
Mukherjee, P., Sarkar, A., Barat, P., Jayakumar, T., Mahadevan, S., and Rai, S.K.: Lattice misfit measurement in Inconel 625 by X-ray diffraction technique. arXiv preprint cond-mat/0604222 (2006).Google Scholar
Kusabiraki, K., Komatsu, H., and Ikeuchi, S.: Lattice constants and compositions of the metastable Ni3Nb phase precipitated in a Ni–15Cr–8Fe–6Nb alloy. Metall. Mater. Trans. A 29(4), 11691174 (1998).Google Scholar
Reppich, B.: Negatives kriechen. Z. Metallkd. 75, 193202 (1984).Google Scholar
Wilson, D.J. and Ferrari, A.: Time-dependent Edge Notch Sensitivity of Oxide and Gamma Prime Dispersion Strengthened Sheet Materials at 1000° to 1800 °F (538–982 °C); Technical Report; The University of Michigan, 1972.Google Scholar
Brown, M.W. and Miller, K.J.: High temperature low cycle biaxial fatigue of two steels. Fatigue Fract. Eng. Mater. Struct. 1(2), 217229 (1979).Google Scholar
Itoh, T., Sakane, M., and Ohnami, M.: High temperature multiaxial low cycle fatigue of cruciform specimen. J. Eng. Mater. Technol. 116, 9098 (1994).Google Scholar
Wang, P., Cui, L., Lyschik, M., Scholz, A., Berger, C., and Oechsner, M.: A local extrapolation based calculation reduction method for the application of constitutive material models for creep fatigue assessment. Int. J. Fatigue 44, 253259 (2012).Google Scholar
Wang, P., Cui, L., Scholz, A., Linn, S., and Oechsner, M.: Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents. Int. J. Fatigue 67, 220227 (2014).Google Scholar
Łagoda, T., Macha, E., and Sakane, M.: Estimation of high temperature fatigue lifetime of SUS304 steel with an energy parameter in the critical plane. J. Theor. Appl. Mech. 41, 5573 (2003).Google Scholar
Sakane, M., Ohnami, M., Kuno, T., and Itsumura, T.: High temperature biaxial low cycle fatigue using cruciform specimen. J. Soc. Mater. Sci., Jpn. 37(414), 340346 (1987).Google Scholar
Ogata, T. and Takahashi, Y.: Development of a high-temperature biaxial fatigue testing machine using a cruciform specimen. In Multiaxial Fatigue and Fracture Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture, Bedkowski, W., Macha, E., and Łagoda, T., eds.; European Structural Integrity Society, Vol. 25 (Elsevier, 1999); pp. 101114.Google Scholar
Ogata, T.: Biaxial thermomechanical-fatigue life property of a directionally solidified Ni-base superalloy. J. Eng. Gas Turbines Power 130(6), 062101 (2008).CrossRefGoogle Scholar
Supplementary material: PDF

Kulawinski et al supplementary material

Figure S1 and Tables S1-S2

Download Kulawinski et al supplementary material(PDF)
PDF 117 KB