Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T17:19:08.676Z Has data issue: false hasContentIssue false

Ion microprobe analysis of laser-deposited Y–Ba–Cu thin film: Effects of anneal temperature

Published online by Cambridge University Press:  31 January 2011

Y. L. Wang
Affiliation:
The Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637
R. Levi-Setti
Affiliation:
The Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637
J. M. Chabala
Affiliation:
The Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637
T. Venkatesan
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701
X. D. Wu
Affiliation:
Physics Department, Rutgers University, Piscataway, New Jersey 08854
A. Inam
Affiliation:
Physics Department, Rutgers University, Piscataway, New Jersey 08854
B. Dutta
Affiliation:
Physics Department, Middlebury College, Middlebury, Vermont 05753
Get access

Abstract

We have employed high spatial resolution (<50 nm) SIMS to study thin film deposited on SrTiO3, produced by pulsed laser evaporation of bulk stoichiometric YBa2Cu3Ox pellets derived from either BaCO3 or Ba3N2. The grain growth, film-substrate interaction, and carbon contamination of the films were examined as a function of post-deposition anneal temperature ranging between 700 °C and 900 °C. On the surface of both types of film, we found overgrowth crystals, which are enriched in copper, that increased in size from a few tenths of a micron to several microns with increasing anneal temperature. Above 800 °C, the film forms a polycrystalline structure with grain size of ∼1 micron. With increasing anneal temperature, more strontium was observed on the surface of the film. Films prepared from YBa2Cu3Ox targets derived from BaCO3 and Ba3N2 were both contaminated with carbon: however, only the former showed segregated carbon along the grain boundaries of the polycrystalline film annealed at 900 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wu, M. K.Ashburn, J. R.Torng, C. J.Hor, P. H.Meng, R. L.Gao, L.Huang, Z. J.Wang, Y. Q. and Chu, C. W.Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2Laibowitz, R.B.Koch, R. H.Chaudhari, P. and Gambino, R. J.Phys. Rev. B 35, 8821 (1987).CrossRefGoogle Scholar
3Dijkkamp, D.Venkatesan, T.Wu, X. D.Shaheen, S.A.Jisrawi, N.Min-Lee, Y. H., McLean, W. L. and Croft, M.Appl. Phys. Lett. 51, 619 (1987).CrossRefGoogle Scholar
4Hong, M.Liou, S.H.Kwo, J. and Davidson, B.A.Appl. Phys. Lett. 51, 694 (1987).CrossRefGoogle Scholar
5Webb, C.Weng, S-L.Eckstein, J. N.Missert, N.Char, K.Schlom, D.G.Hellman, E. S.Beasley, M. R.Kapitulnik, A. and Harris, J. S. Jr. , Appl. Phys. Lett. 51, 1191 (1987).CrossRefGoogle Scholar
6Hamdi, A. H.Mantese, J. V.Micheli, A. L.Laugal, R. C. O.Dungan, D. F.Zhang, Z. H. and Padmanabhan, K. R.Appl. Phys. Lett. 51, 2152 (1987).CrossRefGoogle Scholar
7Berry, A.D.Gaskill, D.K.Holm, R. T.Cukauskas, E. J.Kaplan, R. and Henry, R. L.Appl. Phys. Lett. 52, 1743 (1988).CrossRefGoogle Scholar
8Lathrop, D.K.Russek, S.E. and Buhrman, R. A.Appl. Phys. Lett. 51, 1554 (1987).CrossRefGoogle Scholar
9Adachi, H.Hirochi, K.Setsune, K.Kitabatake, M. and Wasa, K.Appl. Phys. Lett. 51, 2263 (1987).CrossRefGoogle Scholar
10Wu, X.D.Inam, A.Venkatesan, T.Chang, C.C.Chase, E.W.Barboux, P.Tarascon, J.M. and Wilkens, B.Appl. Phys. Lett. 52, 754 (1988).CrossRefGoogle Scholar
11Witanachchi, S.Kwok, H.S.Wang, X.W. and Shaw, D.T.Appl. Phys. Lett. 53, 234 (1988).CrossRefGoogle Scholar
12Venkatesan, T.Wu, X.D.Dutta, B.Inam, A.Hegde, M.S.Hwang, D.M.Chang, C. C.Nazar, L. and Wilkens, B.Appl. Phys. Lett. 54, 581 (1989).CrossRefGoogle Scholar
13Venkatesan, T.Wu, X.D.Inam, A.Hegde, M.S.Chase, E.W.Chang, C.C.England, P.Hwang, D.M.Krchnavek, R.Wachtman, J.B.Mclean, W. L.Levi-Setti, R., Chabala, J. and Wang, Y. L. in Chemistry of High-temperature Superconductors II, edited by Nelson, David L. and George, Thomas F.American Chemical Society, Symposium Serials #377, ch. 19, 234 (1988).CrossRefGoogle Scholar
14Tarascon, J.M.McKinnon, W.R.Green, L. H.Hull, G. H. and Vogel, E.M., Phys. Rev. B 36, 226 (1987).CrossRefGoogle Scholar
15Levi-Setti, R., Wang, Y. L. and Crow, G.Appl. Surf. Sci. 26, 249 (1986).CrossRefGoogle Scholar
16Hwang, D. M.Nazar, L.Venkatesan, T. and Wu, X. D.Appl. Phys. Lett. 52, 1834 (1988).CrossRefGoogle Scholar
17Veal, B. W.Kwok, W. K.Umezawa, A.Crabtree, G. W.Jorgensen, J. D.Downey, J. W.Nowicki, L. J.Mitchell, A. W.Paulikas, A. P. and Sowers, C. H., Appl. Phys. Lett. 51, 279 (1987).CrossRefGoogle Scholar
18Ono, A.Tanaka, T.Nozaki, H. and Ishizawa, Y.Jpn. J. Appl. Phys. 26, L1687 (1987).CrossRefGoogle Scholar
19Yoshida, M., Jpn. J. Appl. Phys. 27, L1248 (1988).CrossRefGoogle Scholar
20Venkatesan, T.Wu, X.D.Inam, A. and Wachtman, J.B.Appl. Phys. Lett. 52, 1193 (1988).CrossRefGoogle Scholar