Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T10:21:52.969Z Has data issue: false hasContentIssue false

Ion beam amorphization of muscovite mica

Published online by Cambridge University Press:  31 January 2011

C. Templier
Affiliation:
Laboratoire de Métallurgie Physique, 40 Av. Recteur Pineau 86022 Poitiers, Cedex, France
F. Desage
Affiliation:
Laboratoire de Métallurgie Physique, 40 Av. Recteur Pineau 86022 Poitiers, Cedex, France
J. C. Desoyer
Affiliation:
Laboratoire de Métallurgie Physique, 40 Av. Recteur Pineau 86022 Poitiers, Cedex, France
G. Hishmeh
Affiliation:
Midwest Research Technologies Inc., 14540 Greenfield Avenue, Brookfield, Wisconsin 53005
L. Cartz
Affiliation:
College of Engineering, Marquette University, Milwaukee, Wisconsin 53233
S. E. Donnelly
Affiliation:
Joule Laboratory, Science Research Institute, University of Salford M5 4WT, United Kingdom
V. Vishnyakov
Affiliation:
Joule Laboratory, Science Research Institute, University of Salford M5 4WT, United Kingdom
R. C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The microstructure of a muscovite mica exposed to a rare gas ion beam has been studied by transmission electron microscopy. The investigation of damage without implantation was carried out using argon and helium ions of sufficient energy to traverse the 100–150 nm mica specimens. For 340 keV Ar++ irradiation, amorphization of mica occurred at a fluence as low as 3.5 × 1014 ions · cm−2, which corresponds to 0.29 dpa. Muscovite can be amorphized using 80 keV helium ions, but this requires a much higher fluence and damage production of 4.6 × 10−6 ions · cm−2 and 0.60 dpa, respectively. Since helium irradiation results principally in ionization energy loss, it indicates that amorphization of muscovite results mainly from nuclear interactions. Complete amorphization of muscovite mica is found to take place for all ions at approximately the same amount of nuclear energy transfer to energetic primary knock-on atoms, assuming a recoil energy greater than 500 eV. This suggests that amorphization occurs directly in dense displacement cascades. A significant amount of helium, 100 ppm, can be implanted into muscovite mica without destroying the crystal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cartz, L., Karioris, F. G., and Yang, X., Inst. Phys. Conf. Series 111, 507 (1990).Google Scholar
2.Hishmeh, G., Cartz, L., Karioris, F. G., Templier, C., Chaumont, J., and Clerc, C., J. Am. Ceram. Soc. 76, 343 (1993).CrossRefGoogle Scholar
3.Xu, Q., M. S. Thesis, Marquette University, Milwaukee, WI (1992).Google Scholar
4.Hismeh, G. A., Cartz, L., Desage, F., Templier, C., Desoyer, J.C., and Birtcher, R. C., J. Mater. Res. 9, 3095 (1994).CrossRefGoogle Scholar
5.Templier, C., in Fundamental Aspects of Inert Gases in Solids, edited by Donnelly, S. E. and Evans, J.H. (Plenum Press, New York, 1991), pp. 117132.CrossRefGoogle Scholar
6.Andersen, H. H., Bohr, J., Johansen, A., Johnson, E., Sarholt-Kristensen, L., and Surganov, V., Phys. Rev. Lett. 59, 1589 (1987).CrossRefGoogle Scholar
7.Birtcher, R. C. and Liu, A. S., J. Nucl. Mater. 165, 101 (1989).CrossRefGoogle Scholar
8.Norton, M. G., Fleisher, E. L., Hertl, W., Carter, C. B., Mayer, J. W., and Johnson, E., Phys. Rev. B 43, 9291 (1991).CrossRefGoogle Scholar
9.Fleischer, E. L., Norton, M. G., Zaleski, M. A., Hertl, W., Carter, C. B., and Mayer, J. W., J. Mater. Res. 6, 1905 (1991).CrossRefGoogle Scholar
10.Ewing, R. C., Weber, W. J., and Clinard, F. W., Jr., Prog. Nucl. Energy 29 (2), 63 (1995).CrossRefGoogle Scholar
11.Ewing, R. C. and Wang, L.M., Nucl. Instrum. Methods B65, 319 (1992).CrossRefGoogle Scholar
12.Wang, L. M. and Ewing, R.C., Nucl. Instrum. Methods B65, 324 (1992).CrossRefGoogle Scholar
13.Weber, W. J., Ewing, R. C., and Wang, L. M., J. Mater. Res. 9, 688 (1994).CrossRefGoogle Scholar
14.Wang, L. M. and Ewing, R. C., in Phase Formation and Mollification by Beam-Solid Interactions, edited by Was, G., Rehn, L. E., and Follstaedt, D. M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 333.Google Scholar
15.Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods. Phys. Rev. 174, 257 (1980).CrossRefGoogle Scholar
16.Eby, R. K., Ewing, R. C., and Birtcher, R. C., J. Mater. Res. 7, 3080 (1992).CrossRefGoogle Scholar
17.Jaouen, C., Physic Thesis, Poitiers, France.Google Scholar
18.Wang, L. M. and Birtcher, R. C., Philos. Mag. A 64, 1209 (1991).CrossRefGoogle Scholar
19.Birtcher, R. C., Allen, C. W., Rehn, L. E., and Hofman, G. L., J. Nucl. Mater. 152, 73 (1988).CrossRefGoogle Scholar
20.Perez, A. and Thevenard, P., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, New York, 1987), p. 156.Google Scholar
21.Thibaudau, F., Cousty, J., Balanzat, E., and Bouffard, S., Phys. Rev. Lett. 67, 1582 (1991).CrossRefGoogle Scholar
22.Chailley, V., Dooryhée, E., Bouffard, S., Balanzat, E., and Levallois, M., Nucl. Instrum. Methods, Phys. Res. B 91, 162 (1994).CrossRefGoogle Scholar
23.Toulemonde, M., Bouffard, S., and Studer, F., Nucl. Instrum. Methods, Phys. Res. B 91, 108 (1994).CrossRefGoogle Scholar
24.Wang, L. M., Miller, M. L., and Ewing, R. C., Ultramicroscopy 51, 339 (1993).CrossRefGoogle Scholar
25.Naguib, H. M. and Kelly, R., Rad. Effects 25, 1 (1975).CrossRefGoogle Scholar
26.Wiedersich, H., J. Nucl. Mater. 206, 121 (1993).CrossRefGoogle Scholar
27.Birtcher, R. C., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M., Harriott, L. R., Herbots, N., and Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 129.Google Scholar