Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T08:38:16.694Z Has data issue: false hasContentIssue false

Investigations of the chemistry and bonding at niobiumsapphire interfaces

Published online by Cambridge University Press:  03 March 2011

J. Bruley
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
R. Brydson
Affiliation:
Department of Materials Science, University of Surrey, Guildford GU2 5XH, United Kingdom
H. Müllejans
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
J. Mayer
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
G. Gutekunst
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
W. Mader
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
D. Knauss
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
Get access

Abstract

Spatially resolved electron energy-loss data have been recorded at the interface between niobium and sapphire (α-Al2O3), a model metal/ceramic couple. The spatial-difference technique is used to extract interface specific components of the energy-loss near-edge structure (ELNES), which are dependent on the chemistry and bonding across the interface. Multiple scattering calculations of aluminum, oxygen, and niobium clusters were performed to simulate the measured Al L2,3 ELNES. Two samples fabricated by different techniques were examined. The first interface was made by diffusion bonding pure crystals. Its interface spectrum is identified with tetrahedral coordination of the Al ions at the interface. The calculations match the experimental edge structures, supporting the notion of aluminum to niobium metal bonding and concurring with a structural model in which the basal plane of sapphire at the interface is terminated by a full monolayer (i.e., 67% excess) of aluminum. The second sample was produced by molecular beam epitaxy. The spectrum of this interface is consistent with an atomistic structure in which the interfacial basal plane of sapphire is terminated by oxygen. An unoccupied band of states within the band gap of Al2O3 is observed, signifying chemical bonding between metal and ceramic.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Metal-Ceramic Interfaces, edited by Rühle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergamon Press, New York, 1990).Google Scholar
2Rühle, M. and Evans, A. G., Mater. Sci. Eng. A 107, 187197 (1989).Google Scholar
3Russell, K. C., Oh, S-Y., and Figueredo, A., MRS Bull.,/April, 4652 (1991).Google Scholar
4Rühle, M., Fresenius J. Anal. Chem. 341, 369377 (1991).Google Scholar
5Mayer, J., Gutekunst, G., Möbus, G., Dura, J., Flynn, C. P., and Rühle, M., Acta Metall. Mater. 40 (suppl.), S217S225 (1992).Google Scholar
6Mayer, J., Dura, J. A., Flynn, C. P., and Rühle, M., Surf. Coatings Technol. 43/44, 199212 (1990).Google Scholar
7Burger, K. and Rühle, M., Ultramicroscopy 29, 8897 (1989).CrossRefGoogle Scholar
8Knauss, D. and Mader, W., Ultramicroscopy 37, 247262 (1991).Google Scholar
9Mader, W. and Rühle, M., Acta Metall. 37, 853866 (1989).CrossRefGoogle Scholar
10Mayer, J., Flynn, C. P., and Rühle, M., Ultramicroscopy 33, 5161 (1990).CrossRefGoogle Scholar
11Kuwabara, M., Spence, J. C. H., and Rühle, M., J. Mater. Res. 4, 972977 (1989).Google Scholar
12Ohuchi, F. and Kōyama, K., J. Am. Ceram. Soc. 74, 11631187 (1991).Google Scholar
13Kōyama, M., Kose, S., Kinoshita, M., and Yamamoto, R., J. Phys. Chem. Solids 53, 345354 (1992).CrossRefGoogle Scholar
14Kruse, C., Finnis, M. W., Milman, V. Y., Payne, M. C., DeVita, A., and Gillan, M. J., J. Am. Ceram. Soc. 77, 431436 (1994).Google Scholar
15Colliex, C., Transmission Electron Energy Loss Spectrometry in Materials Science, edited by Disko, M. M., Ann, C. C., and Fultz, B. (The Minerals, Metals and Materials Society, Warrendale, PA, 1992), p. 85.Google Scholar
16Batson, P. E., Kavanagh, K. L., Wong, C. Y., and Woodall, J. M., Ultramicroscopy 22, 89 (1987).Google Scholar
17Batson, P. E., Mater. Sci. Eng. B 14, 297303 (1992).Google Scholar
18Bruley, J., Microsc. Microanal. Microstruc. 4, 2329 (1993).Google Scholar
19Höche, T., Kenway, P., Kleebe, H-J., and Rühle, M., J. Am. Ceram. Soc. 77, 339348 (1994).CrossRefGoogle Scholar
20Vvedensky, D. D., Saldin, D. K., and Pendry, J. B., Comput. Phys. Comm. 40, 421 (1986).CrossRefGoogle Scholar
21Brydson, R., Williams, B. G., Engel, W., Lindner, T., Muhler, M., Schlögl, R., Zeitler, E., and Thomas, J. M., J. Chem. Soc. Faraday Trans. 1 84, 631 (1988).Google Scholar
22Hansen, P. L., McComb, D. W., Brydson, R., and Richardson, I., unpublished work.Google Scholar
23Balzorotti, A., Antonangeli, F., Girlanda, R., and Martino, G., Solid State Commun. 44, 275 (1982).Google Scholar
24Bianconi, A., Surf. Sci. 89, 41 (1979).Google Scholar
25Bianconi, A., Frascati (Springer-Verlag, Berlin, 1983), p. 118.Google Scholar
26Balzorotti, A., Antonangeli, F., Girlanda, R., and Martino, G., Phys Rev. B 29, 5903 (1984).Google Scholar
27Brytov, I. A. and Romaschenko, Y. N., Sov. Phys. Solid State 20, 384 (1978).Google Scholar