Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T07:03:16.121Z Has data issue: false hasContentIssue false

Investigation on the properties of hybrid CH3NH3SnxI3 (0.9 ≤ x ≤ 1.4) perovskite systems

Published online by Cambridge University Press:  07 November 2017

Lucangelo Dimesso*
Affiliation:
Materials Science Department, Technische Universitaet Darmstadt, Darmstadt D-64287, Germany
Maximilian Stöhr
Affiliation:
Materials Science Department, Technische Universitaet Darmstadt, Darmstadt D-64287, Germany
Chittaranjan Das
Affiliation:
Materials Science Department, Technische Universitaet Darmstadt, Darmstadt D-64287, Germany
Thomas Mayer
Affiliation:
Materials Science Department, Technische Universitaet Darmstadt, Darmstadt D-64287, Germany
Wolfram Jaegermann
Affiliation:
Materials Science Department, Technische Universitaet Darmstadt, Darmstadt D-64287, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Methylammonium-tin-iodide (MASnxI3, 0.9 ≤ x ≤ 1.4) systems were prepared by self assembly process in aqueous solutions. The “as-prepared” MASnxI3 systems exhibit a crystalline tetragonal structure (space group I4cm) with polyhedral-shaped crystallites. The as-prepared samples were annealed at T = 150 °C, t = 8 h under nitrogen and synthetic air. Under nitrogen, the CH3NH3SnxI3 systems adopted a cubic crystalline structure (space group P4mm) with crystallites of 2–4 μm length, whereas under air, the formation of noncrystalline phases was observed. The optical absorption spectra displayed absorption edges at 1107.0 nm (x = 0.9), 1098.6 nm (x = 1.0), and 1073.2 nm (x = 1.1), respectively, whereas at higher Sn-content (x ≥ 1.2), a broad tail of the absorbance profile was observed. The photoluminescence (PL) emission spectra (RT, λexc = 500 nm) showed major PL-events over 1 µm range and the appearance of additional bands at increasing the Sn-content. The fabrication of layers with a semiconducting behavior was demonstrated.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905913 (2016).CrossRefGoogle Scholar
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009).CrossRefGoogle ScholarPubMed
Binek, A., Petrus, M.L., Huber, N., Bristow, H., Hu, Y., Bein, T., and Docampo, P.: Recycling perovskite solar cells to avoid lead waste. ACS Appl. Mater. Interfaces 8, 1288112886 (2016).Google Scholar
Schmidt, T.M., Larsen-Olsen, T.T., Carle, J.E., Angmo, D., and Krebs, F.C.: Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015).CrossRefGoogle Scholar
Dimesso, L., Dimamay, M., Hamburger, M., and Jaegermann, W.: Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 26, 67626770 (2014).Google Scholar
Dimesso, L., Kim, Y.M., and Jaegermann, W.: Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng., B 204, 2733 (2016).Google Scholar
Boix, P.P., Agarwala, S., Ming Koh, T., Mathews, N., and Mhaisalkar, S.G.: Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6, 898907 (2015).Google Scholar
Benmessaoud, I.R., Mahul-Mellier, A-L., Horvath, E., Maco, B., Spina, M., Lashuel, H., and Forro, L.: Health hazard of the methylammonium lead iodide based perovskites: Cytotoxicity studies. Toxicol. Res. 5, 407419 (2016).Google Scholar
Needleman, H.: Lead poisoning. Annu. Rev. Med. 55, 209222 (2004).Google Scholar
Toscano, C.D. and Guilarte, T.R.: Lead neurotoxicity: From exposure to molecular effects. Brain Res. Rev. 49, 529554 (2005).CrossRefGoogle ScholarPubMed
Pourrut, B., Shahid, M., Dumat, C., Winterton, P., and Pinelli, E.: Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 213, 113136 (2011).Google ScholarPubMed
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., and Hayase, S.: CH3NH3Sn x Pb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 10041011 (2014).Google Scholar
Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., De Angelis, F., and Boyen, H.G.: Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).Google Scholar
Liu, C., Fan, J., Li, H., Zhang, C., and Mai, Y.: Highly efficient perovskite solar cells with substantial reduction of lead content. Sci. Rep. 6, 35705 (2016).Google Scholar
Dimesso, L., Das, C., Stoehr, M., Mayer, T., and Jaegermann, W.: Effect of the annealing atmosphere on the properties of cesium tin iodide (CsSnI3) systems. Mater. Chem. Phys. 197, 2735 (2017).Google Scholar
Scaife, D., Weller, P., and Fisher, W.: Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 9, 308314 (1974).Google Scholar
Foster, L.S., Nahas, H.G., and Lineken, E.E.: Hydriodic acid: Regeneration of oxidized solutions. In Inorganic Syntheses, Vol. 2, Fernelius, W.C., ed. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1946).Google Scholar
Dang, Y., Zhou, Y., Liu, X., Ju, D., Xia, S., Xia, H., and Tao, X.: Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem., Int. Ed. 55, 34473450 (2016).Google Scholar
Bartenev, G.M., Suzdalev, I.P., and Tsyganov, A.D.: Mössbauer effect study of the structure of inorganic glasses. Phys. Status Solidi 37, 7378 (1970).Google Scholar
Dimesso, L., Fasel, C., Lakus-Wollny, K., Mayer, T., and Jaegermann, W.: Thermal (in)-stability of lead-free CH3NH3Sn x I3 systems (0.9 ≤ x ≤ 1.1) prepared by solution method for photovoltaics. Mater. Sci. Semicond. Process. 68, 152158 (2017).Google Scholar
Mitzi, D.B.: Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791800 (1996).Google Scholar
Brunetti, B., Cavallo, C., Ciccioli, A., Gigli, G., and Latini, A.: On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016).CrossRefGoogle ScholarPubMed
Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 90199038 (2013).Google Scholar
Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herza, L.M., and Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 30613068 (2014).Google Scholar
Ju, M.G., Sun, G., Zhaob, Y., and Liang, W.Z.: A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. Phys. Chem. Chem. Phys. 17, 1767917687 (2015).Google Scholar
Li, H. and Oshima, Y.: Elementary reaction mechanism of methylamine oxidation in supercritical water. Ind. Eng. Chem. Res. 44, 87568764 (2005).CrossRefGoogle Scholar
Kittel, C.: Introduction to Solid State Physics, 6th ed., Vol. 185 (John Wiley, New York, USA, 1986).Google Scholar
Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., and Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489494 (2014).CrossRefGoogle Scholar
Novosad, S.S. and Kovalyuk, R.O.: Absorption, luminescence, and electronic properties of CdI2:Sn2+ crystals. Inorg. Mater. 33, 11831188 (1997).Google Scholar
Howie, R.A., Moser, W., and Trevena, I.C.: The crystal structure of tin(II) iodide. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 29652971 (1972).Google Scholar
Supplementary material: File

Dimesso et al. supplementary material

Dimesso et al. supplementary material 1

Download Dimesso et al. supplementary material(File)
File 7.1 MB