Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:14:12.366Z Has data issue: false hasContentIssue false

Investigation of mechanically activated field-activated pressure-assisted synthesis processing parameters for producing dense nanostructured FeAl

Published online by Cambridge University Press:  03 March 2011

S. Paris
Affiliation:
Laboratoire de Recherches sur la Re’activite’ des Solides, UMR 5613 CNRS, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France, and Nanomaterials Group, UMR 5060 CNRS/UTBM, F90010 Belfort, France
Ch. Valot
Affiliation:
Laboratoire de Recherches sur la Re’activite’ des Solides, UMR 5613 CNRS, Université de Bourgogne, BP47870, 21078 Dijon Cedex, France
L. Gosmain
Affiliation:
Laboratoire de Recherches sur la Re’activite’ des Solides, UMR 5613 CNRS, Université de Bourgogne, BP47870, 21078 Dijon Cedex, France
E. Gaffet
Affiliation:
Nanomaterials Group, UMR 5060 CNRS/UTBM, F90010 Belfort, France and GFA, GDR 2391 CNRS, BP47870, F21078 Dijon Cedex, France
F. Bernard*
Affiliation:
Laboratoire de Recherches sur la Re’activite’ des Solides, UMR 5613 CNRS, Université de Bourgogne, BP47870, 21078 Dijon Cedex, France, and GFA, GDR 2391 CNRS, BP47870, F21078 Dijon Cedex, France
Z. Munir
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The parameters of the mechanically activated field-activated pressure-assisted synthesis (MAFAPAS) process, which were recently developed and patented for producing dense nanostructured materials, were studied in the case of the B2-FeAl intermetallic. Based on x-ray diffraction (XRD) experiments, residual stresses XRD analysis, relative density measurement, and secondary-electron microscopic observations, the optimal synthesis conditions (time, current intensity, and pressure) were studied. Fe + Al powders were comilled in a specially designed planetary mill to obtain a mixture of reactants at the nanoscale without the formation of any product. The milled mixtures were then subjected to a high density of alternating current (60 Hz ac, total current 1250 or 1500 A), a uniaxial pressure (70 or 106 MPa), and different times (from 2 to 5 min). This work confirms the reproducibility of the MAFAPAS process, showing the essential role of the mechanical activation step to produce a pure nanostructured material. In addition, the composition and the microstructure of MAFAPAS end-products depended on the processing parameters (time, current density, mechanical pressure). In particular, it was observed that the process of simultaneous synthesis and consolidation of the product introduced a high level of residual stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Froes, F.H. (Sam), Senkov, O.N., and Baburaj, E.G., Mater. Sci. Eng. A 301, 44 (2001).CrossRefGoogle Scholar
2.Mckamey, C.G., Devan, J.H., Tortorelli, P.F., and Sikka, V.K., J. Mater. Res. 6, 1780 (1991).CrossRefGoogle Scholar
3.Deevi, S.C. and Sikka, V.K., Intermetallics 4, 3571 (1996).CrossRefGoogle Scholar
4.Reddy, B.V. and Deevi, S.C., Intermetallics 8, 1369 (2000).Google Scholar
5.Baker, I. and Munroe, P.R., Metal Powder Report 5, 37 (1999).Google Scholar
6.Stoloff, N.S., Mater. Sci. Eng. A 258, 1 (1998).CrossRefGoogle Scholar
7.Sikka, V.K., Blue, C.A., Sklad, S.P., Deevi, S.C., and Shish, H.R., Mater. Sci. Eng. A 258, 325 (1998).Google Scholar
8.Lylli, A.C., Deevi, S.C., and Gibbs, Z.P., Mater. Sci. Eng. A 258, 42 (1998).CrossRefGoogle Scholar
9.Liu, C.T., Mater. Sci. Eng. A 258, 84 (1998).Google Scholar
10.Katesan, N., Mater. Sci. Eng. A 258, 126 (1998).Google Scholar
11.Baker, I. and George, E.P., in Nickel and Iron Aluminides-Processing, Properties, and Applications, edited by Deevi, S.C., Sikka, V.K., Maziasz, P.J., and Cahn, R.W. (ASM International, Materials Park, OH, 1997), p. 145.Google Scholar
12.Fleischer, R.L., Dimiduk, D.M., and Zipsitt, H.A., Ann. Rev. Mater. Sci. 19, 231 (1989).Google Scholar
13.Jain, M. and Christman, T., Acta Metall. Mater. 42, 1901 (1994).Google Scholar
14.Morris, D.G., Dadras, M.M., and Morris, M.A., Mater. Res. Soc. Symp. Proc. 288, 623 (1993).CrossRefGoogle Scholar
15.Zun, Z.Q., Huang, Y.D., Yang, W.Y., and Chen, G.L., Mater. Res. Soc. Symp. Proc. 288, 885 (1993).Google Scholar
16.Wright, R.N. and Rabin, B.H., Metall. Trans. A 22, 277 (1991).Google Scholar
17.Bohn, R., Haubold, T., Birringer, R., and Gleiter, H., Scr. Metall. 25, 811 (1991).CrossRefGoogle Scholar
18.Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
19.Siegel, R.W., Nanostruct. Mater. 4, 21 (1994).Google Scholar
20.Koch, C.C., Nanostruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
21.Hahn, H. and Padmanabhan, K.A., Philos. Mag. B 76, 559 (1997).CrossRefGoogle Scholar
23.Zhang, S. and Munir, Z.A., J. Mater. Sci. 1, 3685 (1991).CrossRefGoogle Scholar
24.Charlot, F., Gaffet, E., Bernard, F., Zeghmati, B., and Niepce, J-C., Mater. Sci. Eng. A 262, 279 (1999).Google Scholar
25. Ch. Gras, Vrel, D., Gaffet, E., and Bernard, F., J. Alloys Compd. 314, 240 (2001).Google Scholar
26.Gauthier, V., Josse, C., Bernard, F., Gaffet, E., and Larpin, J.P., Mater. Sci. Eng. A 265, 117 (1999).CrossRefGoogle Scholar
27.Munir, Z.A., J. Mater. Synth. Process 1, 387 (1993).Google Scholar
28.Munir, Z.A., Shon, I.J., and Yamazaki, K., Patent, U.S. No. 5 794 113 (11 August 1998).Google Scholar
29.Shon, I.J., Munir, Z.A., Yamazaki, K., and Shoda, K., J. Am. Ceram. Soc. 79, 1875 (1996).CrossRefGoogle Scholar
30.Feng, A. and Munir, Z.A., J. Am. Ceram. Soc. 79, 2049 (1996).CrossRefGoogle Scholar
31.Munir, Z.A., Charlot, F., Bernard, F., and Gaffet, E., Patent, U.S. No. 6 200 515 (13 March 2001).Google Scholar
32.Bernard, F., Charlot, F., Gaffet, E., and Munir, Z.A., J. Am. Ceram. Soc. 84, 910 (2001).CrossRefGoogle Scholar
33. Ch. Gras, Bernard, F., Charlot, F., Gaffet, E., and Munir, Z.A., J. Mater. Res. 73, 1 (2002).Google Scholar
34.Gauthier, V., Bernard, F., Gaffet, E., Munir, Z.A., and Larpin, J.P., Intermetallics 9, 571 (2001).CrossRefGoogle Scholar
35.Venkataswasmy, M.A., Schneider, J.A., Groza, J.R., Mukherjee, A.K., Yamazaki, K., and Shoda, K., Mater. Sci. Eng. A 207, 153 (1996).Google Scholar
36.Rawers, J., Slavens, G., Govier, D., Dogan, C., and Doan, R., Metall. Mater. Trans. A 27, 3126 (1996).CrossRefGoogle Scholar
37.Rawers, J., Nanostruct. Mater. 11, 512 (1999).Google Scholar
38.Yun, K.S., Lee, J.H., and Won, C.W., Mater. Res. Bull. 35(10), 1709 (2000).Google Scholar
39.Kawase, K. and Munir, Z.A., Int. J. SHS 7(1), 95 (1998).Google Scholar
40.Gaffet, E., Mater. Sci. Eng. A 132, 181 (1991).Google Scholar
41.Abdellaoui, M., Barradi, T., and Gaffet, E., J. Alloys Compd. 198, 155 (1993).Google Scholar
42.Abdellaoui, M. and Gaffet, E., Acta Mater. 43, 1087 (1995).Google Scholar
43.Gaffet, E., Malhouroux, N., and Abdellaoui, M.J., J. Alloys Compd. 194, 339 (1993).Google Scholar
44.Abdellaoui, M. and Gaffet, E., J. Alloys Compd. 209, 351 (1994).Google Scholar
45.Gaffet, E., Abdellaoui, M., and Malhouroux-Gaffet, N., Mater. Trans. JIM 36, 198 (1995).CrossRefGoogle Scholar
46.Charlot, F., Gaffet, E., Bernard, F., and Niepce, J-C., Acta Mater. 47, 619 (1999).Google Scholar
47.Cardellini, F., Mazzone, G., and Antisari, M.V., Acta Mater. 44, 1511 (1996).Google Scholar
48.Zhang, D.L. and Ying, D.Y., Mater. Sci. Eng. A 301, 90 (2001).Google Scholar
49.Sannia, M., Orr, R., Garay, J.E., Cao, G., and Munir, Z.A., Mater. Sci. Eng. A 345, 270 (2003).Google Scholar
50.Bernard, F., Sciora, E., and Girard, N., J. Phys. IV 6, 259 (1996).Google Scholar
51.Maeder, G., Rev. Fr. Müc. 82, 57 (1982).Google Scholar
52.Maeder, G., Chem. Scr. A 26, 23 (1986).Google Scholar
53.Lenhard, S., Wagner, F., Revol, S., Baccino, R., and Grosdidier, T., Proceeding of the Twelfth International Conference on Textures of Materials, 683 (1999).Google Scholar
54.Desserey, F., Valot, C., Montesin, T., and Larpin, J.P., Mater. Sci. Forum 408–412, 1007 (2002).CrossRefGoogle Scholar
55.Katner, U.R. and Burton, B.P., in Phase Diagrams of Binary Iron Alloys, edited by Okamoto, H. (ASM International, Materials Park, OH, 1993), p. 12.Google Scholar
56.Malhouroux-Gaffet, N., Thèse de doctorat, Université Paris VII, (1993).Google Scholar
57.Guinier, A., in Theorie et technique de la radiocristallographie, edited by Dunod, , Tome 2, 397 (1964).Google Scholar
58.Taylor, A. and Jones, R.M., J. Phys. Chem. Solids 6, 16 (1958).Google Scholar
59.Lihl, F. and Ebel, H., Arch. Eisenhuetten-wes 32, 483 (1961) (in German).Google Scholar
60.Langford, J.L., in The use of the Voigt Function in Determining Microstructural Properties from Diffraction Data by Means of Pattern Decomposition, in Proc. of International Conference on the Accuracy in Powder Diffraction II (Special Publication 846, NIST, Gaithersburg, MD, 1992), p. 110Google Scholar
61.Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).Google Scholar
62.Bernard, F., Gras, C., Larpin, J.P., Valot, C., Gaffet, E., and Munir, Z.A., Int. J. SHS 11, 279 (2002).Google Scholar
63.Kear, B.H., Coalizzi, J., Mayo, W.E., and Liao, S.C., Scr. Mater. 44, 2065 (2001).Google Scholar
64.Baker, I. and Nagpal, P., A Review of the Flow and Fracture of FeAl (Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, Structural Intermetallics, Metals and Materials Society, 1993), p. 463.Google Scholar