Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:21:41.312Z Has data issue: false hasContentIssue false

Investigation of discontinuous precipitation upon age-hardening of invar-based Sn alloy

Published online by Cambridge University Press:  18 September 2017

Maryam Akhlaghi*
Affiliation:
Institute of Iron and Steel Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
Reza Rahimi
Affiliation:
Institute of Iron and Steel Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
Christina Schröder
Affiliation:
Institute of Iron and Steel Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
Olga Fabrichnaya
Affiliation:
Institute of Materials Science, TU Bergakademie Freiberg, Freiberg 09599, Germany
Olena Volkova
Affiliation:
Institute of Iron and Steel Technology, TU Bergakademie Freiberg, Freiberg 09599, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Age-hardening of homogenized and cold-rolled invar-based Sn alloys results in the development of continuously-formed (CP) and discontinuously-formed (DP) Ni3Sn2 precipitates. In situ investigation of the DP reaction front (RF) velocity (V) revealed a nonsteady-state behavior upon early aging stages followed by a constant V after prolonged aging. The reason for the initial nonsteady-state behavior was experimentally studied and attributed to the reduction of matrix Sn-supersaturation ahead of the DP RF as a result of the simultaneous CP coarsening (in homogenized specimen) or the CP increased volume fraction (in cold-rolled specimen). A similar trend of V variation in the homogenized specimen was obtained after the modification of the original Hornbogen model for the nonsteady-state DP growth kinetics. In general, variations of the transformed matrix fraction via the DP reaction suggest the faster kinetics of this reaction in cold-rolled specimen as compared to the homogenized one due to the existence of more nucleation sites induced by the cold deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Shiga, M.: Invar alloys. Curr. Opin. Solid State Mater. Sci. 1(3), 340 (1996).Google Scholar
Nagayama, T., Yamamoto, T., and Nakamura, T.: Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the invar composition range. Electrochim. Acta 205, 178 (2016).Google Scholar
Carr, J. and Colling, D.A.: Theory of thermal expansion in invar alloys. J. Appl. Phys. 44(2), 875 (1973).Google Scholar
Ogorodnikova, O.M. and Maksimova, E.V.: Precipitation hardening of castable iron–nickel invars. Met. Sci. Heat Treat. 57(3–4), 143 (2015).Google Scholar
Liu, H., Sun, Z., Wang, G., Sun, X., Li, J., Xue, F., Peng, H., and Zhang, Y.: Effect of aging on microstructures and properties of Mo-alloyed Fe–36Ni invar alloy. Mater. Sci. Eng., A 654, 107 (2016).CrossRefGoogle Scholar
Wang, C., Yuan, S.Q., Yao, C.G., and Feng, Z.P.: Study of the effect of W and Mo binary alloying on Fe–Ni36 invar alloy properties. Adv. Mater. Res. 690–693, 290 (2013).Google Scholar
Ha, T.K. and Min, S.H.: Effect of C content on the microstructure and physical properties of Fe–36Ni invar alloy. Mater. Sci. Forum 804, 293 (2015).Google Scholar
Sun, D., Sun, Z., Tong, C., Jia, J., Zhang, Y., and Peng, H.: Effect of solid solution treatment on microstructure and performance of nitrogen microalloyed high strength invar alloy. Jinshu Rechuli Heat Treat. Met. 41(12), 102 (2016).Google Scholar
Gulyaev, A.A. and Svistunova, E.L.: Precipitation process and age-hardenability of Fe–Ni–Be invar alloys. Scr. Metall. Mater. 33(9), 1497 (1995).Google Scholar
Nakama, K., Sugita, K., and Shirai, Y.: Effect of MC type carbides on age hardness and thermal expansion of Fe–36 wt% Ni–0.2 wt% C alloy. Metallogr., Microstruct., Anal. 2(6), 383 (2013).Google Scholar
Ha, T.K., Lee, K.D., Song, J-H., and Jeong, H.T.: Effect of aging treatment conditions on the microstructure and strength of Fe–36Ni based invar alloy. Key Eng. Mater. 345–346, 109 (2007).Google Scholar
Eliezer, Z., Weiss, B.Z., Ron, M., and Nadiv, S.: Physical properties of Fe–Ni–Sn invar alloys-Mössbauer effect study. J. Appl. Phys. 44(1), 419 (1973).Google Scholar
Eliezer, Z., Nadiv (Niedzwiedz), S., Ron, M., and Weiss, B.Z.: Mössbauer effect study of plastically deformed tin-bearing invar alloys. Mater. Sci. Eng. 11(5), 269 (1973).Google Scholar
Weiss, B.Z., Ron, M., Nadiv, S., and Eliezer, Z.: Strengthening of Fe–Ni invar by the addition of tin. Inst. Met., Monogr. Rep. Ser. 1(3), 575 (1973).Google Scholar
Nissan, S.I. and Hornstein, F.: Electropolishing of tin bearing invar alloys. Metallography 7(2), 171 (1974).Google Scholar
Nissan, S.I., Komen, Y., and Weiss, B.Z.: An electron microscopy study of the precipitation in an invar-3.31 at.% Sn alloy. Acta Metall. 23(11), 1313 (1975).Google Scholar
Turnbull, D.: Theory of cellular precipitation. Acta Metall. 3(1), 55 (1955).CrossRefGoogle Scholar
Williams, D.B. and Butler, E.P.: Grain boundary discontinuous precipitation reactions. Int. Met. Rev. 26(1), 153 (1981).Google Scholar
Knutsen, R.D., Lang, C.I., and Basson, J.A.: Discontinuous cellular precipitation in a Cr–Mn–N steel with niobium and vanadium additions. Acta Mater. 52(8), 2407 (2004).Google Scholar
Manna, I., Pabi, S.K., and Gust, W.: Discontinuous reactions in solids. Int. Mater. Rev. 46(2), 53 (2001).CrossRefGoogle Scholar
Xie, W-B., Wang, Q-S., Xie, G-L., Mi, X-J., Liu, D-M., and Gao, X-C.: Kinetics of discontinuous precipitation in Cu–20Ni–20Mn alloy. Int. J. Miner., Metall. Mater. 23(3), 323 (2016).Google Scholar
Zener, C.: Kinetics of the decomposition of austenite. Trans. AIME 167, 550 (1946).Google Scholar
Cahn, J.W.: The kinetics of cellular segregation reactions. Acta Metall. 7(1), 18 (1959).Google Scholar
Aaronson, H.I. and Liu, Y.C.: On the turnbull and the Cahn theories of the cellular reaction. Scr. Metall. 2(1), 1 (1968).Google Scholar
Hillert, M.: On theories of growth during discontinuous precipitation. Metall. Trans. 3(11), 2729 (1972).Google Scholar
Sundquist, B.E.: Cellular precipitation. Metall. Trans. 4(8), 1919 (1973).Google Scholar
Fournelle, R.A.: Discontinuous coarsening of lamellar cellular precipitate in an austenitic Fe–30 wt% Ni–6 wt% Ti alloy-II. Growth kinetics. Acta Metall. 27(7), 1147 (1979).Google Scholar
Fournelle, R.A.: Discontinuous coarsening of lamellar cellular precipitate in an austenitic Fe–30 wt% Ni–6 wt% Ti alloy-I. Morphology. Acta Metall. 27(7), 1135 (1979).Google Scholar
Hillert, M.: An improved model for discontinuous precipitation. Acta Metall. 30(8), 1689 (1982).Google Scholar
Manna, I., Jha, J.N., and Pabi, S.K.: Kinetics of discontinuous precipitation and type I discontinuous coarsening in Zn–4 at.% Ag alloy. J. Mater. Sci. 34(4), 773 (1999).Google Scholar
Seo, S-W., Bhadeshia, H.K.D.H., and Suh, D-W.: Pearlite growth rate in Fe–C and Fe–Mn–C steels. Mater. Sci. Technol. 31(4), 487 (2015).Google Scholar
Petermann, J. and Hornbogen, E.: Drei Mechanismen der Ausscheidung in Blei-Natrium-Mischkristallen. Z. Metallkd. 59, 814 (1968).Google Scholar
Kikuchi, M., Urabe, T., Cliff, G., and Lorimer, G.W.: The loss of driving force due to volume diffusion ahead of a migrating boundary in a cellular precipitation reaction. Acta Metall. Mater. 38(6), 1115 (1990).CrossRefGoogle Scholar
Kikuchi, M., Kajihara, M., and Choi, S-K.: Cellular precipitation involving both substitutional and interstitial solutes: Cellular precipitation of Cr2N in Cr–Ni austenitic steels. Mater. Sci. Eng., A 146(1), 131 (1991).CrossRefGoogle Scholar
Srinivas, N.C.S. and Kutumbarao, V.V.: Growth mechanism for discontinuous precipitation in a multi-component (Fe–Cr–Mn–N) system. Scr. Mater. 51(11), 1105 (2004).Google Scholar
Hornbogen, E.: Systematics of the cellular precipitation reactions. Metall. Trans. 3(11), 2717 (1972).Google Scholar
Boumerzoug, Z., Boudhib, L., and Chala, A.: Influence of plastic deformation on occurrence of discontinuous precipitation. J. Mater. Sci. 40(12), 3199 (2005).Google Scholar
Fatmi, M. and Boumerzoug, Z.: Influence of plastic deformation on occurrence of discontinuous precipitation reaction in Ni–3 at% In alloy. Phys. B 405(19), 4111 (2010).Google Scholar
Ng, H.P., Bettles, C.J., and Muddle, B.C.: Some observations on deformation-related discontinuous precipitation in an Al–14.6 at.% Zn alloy. J. Alloys Compd. 509(5), 1582 (2011).Google Scholar
ICDD Data Base, PCPDFWIN (2002).Google Scholar
Aneziris, C.G., Schroeder, C., Emmel, M., Schmidt, G., Heller, H.P., and Berek, H.: In situ observation of collision between exogenous and endogenous inclusions on steel melts for active steel filtration. Metall. Mater. Trans. B 44(4), 954 (2013).Google Scholar
Huang, T.T., Lin, S.W., Chen, C.M., Chen, P.Y., and Yen, Y.W.: Phase equilibria of the Fe–Ni–Sn ternary system at 270 °C. J. Electron. Mater. 45(12), 6208 (2016).Google Scholar
Andersson, J-O., Helander, T., Höglund, L., Shi, P., and Sundman, B.: Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273 (2002).Google Scholar
www.sgte.net: Solution database (2015).Google Scholar
Mittemeijer, E.J.: Fundamentals of Materials Science (Springer, Berlin, 2011).Google Scholar
Manna, I., Pabi, S.K., and Gust, W.: Initiation sites for discontinuous precipitation in some Cu-base alloys. J. Mater. Sci. 26(18), 4888 (1991).Google Scholar
Azzeddine, H., Abdessameud, S., Alili, B., Boumerzoug, Z., and Bradai, D.: Effect of grain boundary misorientation on discontinuous precipitation in an AZ91 alloy. Bull. Mater. Sci. 34(7), 1471 (2011).Google Scholar
Baker, H., ed.: ASM Handbook Volume 3: Alloy Phase Diagrams-ASM International (ASM International, Michigan, 1992).Google Scholar
Pearson, W.B.: A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, NY, 1958).Google Scholar
Steiner, T., Akhlaghi, M., Meka, S.R., and Mittemeijer, E.J.: Diffraction-line shifts and broadenings in continuously and discontinuously coarsening precipitate-matrix systems: Coarsening of initially coherent nitride precipitates in a ferrite matrix. J. Mater. Sci. 50(21), 7075 (2015).Google Scholar
Porter, D.A. and Easterling, K.E.: Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Londen, 1992).Google Scholar
Christian, J.W.: The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975).Google Scholar
Selg, H., Bischoff, E., Meka, S.R., Schacherl, R.E., Waldenmaier, T., and Mittemeijer, E.J.: Molybdenum-nitride precipitation in recrystallized and cold-rolled Fe–1 at.% Mo alloy. Metall. Mater. Trans. A 44(9), 4059 (2013).Google Scholar
Renaud, P. and Steinemann, S.G.: High temperature elastic constants of fcc Fe–Ni invar alloys. Phys. B 161(1–3), 75 (1990).Google Scholar
Chung, T.J., Moon, W.H., Park, Y.G., Kim, M.C., and Choi, C.K.: First-principle study on substitution of Cu or P into Ni–Sn intermetallic compounds. Intermetallics 18(6), 1228 (2010).Google Scholar
Arita, M., Ohyama, M., Goto, K.S., and Someno, M.: Measurements of activity, solubility, and diffusivity in alpha and gamma Fe–Sn alloys between 1183 and 1680 K. Z. Met. 72(4), 244 (1981).Google Scholar
Ziȩba, P. and Gust, W.: Principles of EDX analysis in lamellar products. Arch. Metall. 43(3), 217 (1998).Google Scholar