Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T07:15:33.988Z Has data issue: false hasContentIssue false

Investigation of a ductile and corrosion-resistant Pd79Au1.5Ag3Si16.5 bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

C.L. Qin
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
G.Q. Xie
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
A. Inoue
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan; and Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

A new Pd79Au1.5Ag3Si16.5 bulk metallic glass was successfully synthesized in a maximum casting thickness range to 3 mm. Upon heating, the single glassy phase decomposed into Pd-rich crystalline phases and a Si-rich amorphous phase due to solute partitioning. In addition to high thermal stability, this bulk glassy alloy also exhibited a high degree of ductility and excellent corrosion resistance, showing potential applications as biomaterials.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A.Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000)Google Scholar
2.Drehman, A.J., Greer, A.L., Turnbull, D.Bulk formation of a metallic glass: Pd40Ni40P20. Appl. Phys. Lett. 41, 716 (1982)Google Scholar
3.Kui, H.W., Greer, A.L., Turnbull, D.Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615 (1984)Google Scholar
4.Inoue, A., Nishiyama, N., Kimura, H.Effect of B addition on extension of supercooled liquid region before crystallization in Pd-Cu-Si amorphous alloys. Mater. Trans., JIM 38, 179 (1997)Google Scholar
5.Alamgir, F.M., Jain, H., Schwarz, R.B., Jin, O., Williams, D.B.Electronic structure of Pd-based bulk metallic glasses. J. Non-Cryst. Solids 274, 289 (2000)CrossRefGoogle Scholar
6.Kato, H., Wada, T., Hasegawa, M., Saida, T., Inoue, A., Chen, H.S.Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability. Scr. Mater. 54, 2023 (2006)Google Scholar
7.Hirata, A., Hirotsu, Y., Nieh, T.G., Ohkubo, T., Tanaka, N.Direct imaging of local atomic ordering in a Pd–Ni–P bulk metallic glass using Cs-corrected transmission electron microscopy. Ultramicroscopy 107, 116 (2007)Google Scholar
8.Schuster, B.E., Wei, Q., Hufnagel, T.C., Ramesh, K.T.Size-independent strength and deformation mold in compression of a Pd-based metallic glass. Acta Mater. 56, 5091 (2008)Google Scholar
9.Saotome, Y., Itoh, K., Zhang, T., Inoue, A.Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541 (2001)Google Scholar
10.Kumar, G., Tang, H.X., Schroers, J.Nanomoulding with amorphous metals. Nature 457, 868 (2009)CrossRefGoogle ScholarPubMed
11.Nishiyama, N., Takenaka, K., Inoue, A.Pd30Pt17.5Cu32.5P20 alloy with low critical cooling rate of 0.67 K/s. Appl. Phys. Lett. 88, 121908 (2006)CrossRefGoogle Scholar
12.Lu, I-R., Wilder, G., Görler, G.P., Willnecker, R.Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 (1999)CrossRefGoogle Scholar
13.Fan, G.J., Löffler, J.F., Wunderlich, R.K., Fecht, H-J.Thermodynamics, enthalpy relaxation, fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20. Acta Mater. 52, 667 (2004)Google Scholar
14.Tang, X-P., Löffler, J.F., Schwarz, R.B., Johnson, W.L., Wu, Y.Structural influence on atomic hopping and electronic states of Pd-based bulk metallic glasses. Appl. Phys. Lett. 86, 072104 (2005)CrossRefGoogle Scholar
15.Chen, H.S., Turnbull, D.Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 17, 1021 (1969)Google Scholar
16.Takenaka, K., Wada, T., Nishiyama, N., Kimura, H., Inoue, A.New Pd-based bulk glassy alloys with high glass-forming ability and large supercooled liquid region. Mater. Trans. 46, 1720 (2005)Google Scholar
17.Liu, L., Zhao, X.J., Ma, C.L., Pang, S.J., Zhang, T.Formation and thermal stability of Pd-based bulk metallic glasses. J. Non-Cryst. Solids 352, 5487 (2006)Google Scholar
18.Greer, A.L.Metallic glasses. Science 267, 1947 (1995)Google Scholar
19.Egami, T., Waseda, Y.Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984)Google Scholar
20.Inoue, A.High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995)Google Scholar
21.Johnson, W.L.Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999)Google Scholar
22.Chou, C.P., Turnbull, D.Transformation behavior of Pd–Au–Si metallic glasses. J. Non-Cryst. Solids 17, 169 (1975)Google Scholar
23.Kajiwara, K., Ohnuma, M., Ping, D.H., Haruyama, O., Hono, K.Nanocrystallization of Pd74Si18Au8 metallic glass. Intermetallics 10, 1053 (2002)Google Scholar
24.Duwez, P., Willens, R.H., Crewdson, R.C.Amorphous phase in palladium–silicon alloys. J. Appl. Phys. 36, 2267 (1965)CrossRefGoogle Scholar
25.Louzguine-Luzgin, D.V., Kaloshkin, S.D., Inoue, A.Peritectic-like reactions involving glassy phase. Rev. Adv. Mater. Sci. 18, 653 (2008)Google Scholar
26.Louzguine, D.V., Inoue, A.Multicomponent Si-based amorphous alloys produced by melt-spinning and their crystallization behaviour. Mater. Trans. 38, 1095 (1997)CrossRefGoogle Scholar
27.Louzguine, D.V., Inoue, A.The influence of cooling rate on the formation of an amorphous phase in Si-based multicomponent alloys and its thermal stability. Mater. Res. Bull. 34, 1165 (1999)Google Scholar
28.Louzguine, D.V., Kawamura, Y., Inoue, A.Formation of Si55Al20Fe10Zr5Cr5Ni5 bulk amorphous alloy by hot pressing. Mater. Sci. Technol. 15, 583 (1999)Google Scholar
29.Zhang, X.Q., Wang, W., Ma, E., Xu, J.Refractory Mo–Si-based glassy alloy designed for ultrahigh strength and thermal stability. J. Mater. Res. 20, 2910 (2005)Google Scholar
30.Louzguine-Luzgin, D.V., Inoue, A.Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 (2005)Google Scholar
31.Mondal, K., Kumar, G., Ohkubo, T., Oishi, K., Mukai, T., Hono, K.Large apparent compressive strain of metallic glasses. Philos. Mag. Lett. 87, 625 (2007)Google Scholar
32.Yang, B.J., Yao, J.H., Zhang, J., Yang, H.W., Wang, J.Q., Ma, E.Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 61, 423 (2009)CrossRefGoogle Scholar
33.Zhang, Z.F., Zhang, H., Pan, X.F., Das, J., Eckert, J.Effect of aspect ratio on the compressive deformation and fracture behavior of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 (2005)Google Scholar
34.Spaepen, F.Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977)CrossRefGoogle Scholar
35.Argon, A.S.Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979)Google Scholar
36.Leamy, H.J., Chen, H.S., Wang, T.T.Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972)Google Scholar
37.Liu, Y.H., Liu, C.T., Wang, W.H., Inoue, A., Sakurai, T., Chen, M.W.Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength. Phys. Rev. Lett. 103, 065504 (2009)Google Scholar
38.Xing, L-Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C.Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B: Condens. Matter 64, 180201 (2001)Google Scholar
39.Schroers, J., Johnson, W.L.Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004)Google Scholar
40.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.“Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)Google Scholar
41.Bruck, H.A., Rosakis, A.J., Johnson, W.L.The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996)Google Scholar
42.Flores, K.M., Dauskardt, R.H.Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals. J. Mater. Res. 14, 638 (1999)Google Scholar
43.Zhang, Z.F., Eckert, J., Schultz, L.Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003)CrossRefGoogle Scholar
44.Xie, S., George, E.P.Size-dependent plasticity and fracture of a metallic glass in compression. Intermetallics 16, 485 (2008)Google Scholar
45.Zhou, Q.Y., Argon, A.S., Cohen, R.E.Enhanced case-II diffusion of diluents into glassy polymers undergoing plastic flow. Polymer (Guildf.) 42, 613 (2001)CrossRefGoogle Scholar
46.Kim, J-J., Choi, Y., Suresh, S., Argon, A.S.Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 25, 654 (2002)Google Scholar