Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T18:56:13.412Z Has data issue: false hasContentIssue false

The interfacial reaction in Cr3C2/Al2O3 composites

Published online by Cambridge University Press:  31 January 2011

Ding-Fwu Lii
Affiliation:
Department of Electrical Engineering, Chinese Naval Academy, Kaohsiung, Taiwan 813, Republic of China
Jow-Lay Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Jin-Jay Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Horng-Hwa Lu
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Get access

Abstract

This study investigates the effects of sintering atmosphere and temperature on the interfacial properties of Cr3C2/Al2O3 composites. Thermodynamic considerations and calculations with computer-assisted methods for the equilibrium compositions in the Al–O–Cr–C system were used to simulate the interfacial reaction in Cr3C2/Al2O3 composite during sintering. The results were in good agreement with the experimental analysis. Cr3C2 is more stable during sintering in a system with carbon due to the lower equilibrium oxygen partial pressure. Controlling CO and O2 gas concentration, Cr3C2 first oxidized, decarbonized, and then transformed to Cr7C3 before reacting with Al2O3. An interfacial reaction between Cr3C2 and Al2O3 was not observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fu, C. T., Wu, J. M., and Li, A.K., J. Mater. Sci. 29, 26712677 (1994).Google Scholar
2.Lio, S., Watanabe, M., Matsubara, M., and Matsuo, Y., J. Am. Ceram. Soc. 72 (10), 18001884 (1989).Google Scholar
3.Tseng, W.J. and Funkenbusch, P. D., J. Am. Ceram. Soc. 75 (5), 11711175 (1992).Google Scholar
4.Chou, Y.S. and Green, D.J., J. Am. Ceram. Soc. 75 (12), 33463352 (1992).Google Scholar
5.Matsushita, J., Nagashima, H., and Saito, H., J. Ceram. Soc. Jpn. 198, 452456 (1990).Google Scholar
6.Fu, C.T., Li, A. K., and Wu, J. M., J. Mater. Sci. 28, 62856294 (1993).Google Scholar
7.Prtrofes, N.F. and Gadalla, A. M., Am. Ceram. Soc. Bull. 67, 1048 (1988).Google Scholar
8.Bellosi, A., Portu, G.D., and Guicciardi, S., J. Eur. Ceram. Soc. 10, 307 (1992).Google Scholar
9.Shu, K.M., Fu, C.T., and Liu, D. M., J. Mater. Sci. Lett. 13, 11461148 (1994).Google Scholar
10.Fu, C.T. and Wu, J. M., Brit. Ceram. Trans. 93 (5), 178182 (1994).Google Scholar
11.Lii, D.F., Huang, J. L., Twu, K. C., and Li, A. K., J. Ceram. Soc. Jpn. 104 (9), 796801 (1996).Google Scholar
12.Huang, J. L., Twu, K. C., Lii, D. F., and Li, A.K., Mater. Chem. Phys. 51, 211215 (1997).Google Scholar
13.Huang, J. L., Huang, J. J., Jeng, C. A., and Li, A. K., Ceram. Int. J. (in press, 1999).Google Scholar
14.Kim, Y.K. and Lee, J. G., J. Am. Ceram. Soc. 72 (8), 13331337 (1989).Google Scholar
15.Rao, Y.K. and Lee, H. G., Trans. J. Brit. Ceram. Soc. 82, 123128 (1983).Google Scholar
16.JANAF Thermochemical Tables, 3rd ed. (American Chemical Society and American Institute of Physics for National Institute of Standards Technology, Washington, DC, 1985).Google Scholar
17.Gaskell, D.R., Introduction to Metallurgical Thermodynamics, 2nd ed. (McGraw-Hill Book Company, New York, 1994).Google Scholar
18.Ho, C.T., J. Mater. Sci. 29, 33093315 (1994).Google Scholar
19.Jorand, Y., Dubois, J., Brodhag, C., and Philipponeau, G., in Advanced Structural Inorganic Composites (Elsevier Science Publishers B.V., New York, 1993), pp. 599608.Google Scholar
20.Fu, C.T., Ph.D. dissertation, National Tsing Hua University, Taiwan (1994).Google Scholar