Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-10-04T14:43:34.114Z Has data issue: false hasContentIssue false

Interdiffusion reaction, phase sequence, and glass formation in Ni-Zr composites

Published online by Cambridge University Press:  31 January 2011

J. Eckert
Affiliation:
Siemens AG, Research Laboratories, D-8520 Erlangen, Germany
L. Schultz
Affiliation:
Siemens AG, Research Laboratories, D-8520 Erlangen, Germany
K. Urban
Affiliation:
KFA Jülich, Institut für Festkörperforschung, D-5170 Jülich, Germany
Get access

Abstract

The progress of solid-state reaction in Ni–Zr composite wires with different elemental layer thicknesses has been studied in detail. Besides x-ray diffraction and differential scanning calorimetry, dilatometric measurements, magnetization and resistivity measurements, and cross–sectional transmission electron microscopy were used to monitor the reaction during constant-rate heating and to characterize the various reaction products. An amorphous phase initially forms at the interface between the elemental layers. As soon as the layer thickness exceeds a critical value, the intermetallic NiZr phase appears at the interface between the amorphous phase and pure Zr, as shown by TEM investigations. This is due to a reduced velocity of the reaction front caused by the longer diffusion path enabling the intermetallic phase to become stable. As shown in experiments at a constant heating rate, a second intermetallic phase forms at higher temperatures at the interface between Zr and crystalline NiZr. The amorphous phase remains unchanged up to crystallization at about 520 °C. To obtain fully amorphous material, the interdiffusion reaction must be completed (or especially the Zr layers must be completely reacted) before the intermetallic NiZr phase starts to form. A criterion for achieving completely amorphous bulk material is derived.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2.Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Solids 61 & 62, 817 (1984).CrossRefGoogle Scholar
3.Schröder, H., Samwer, K., and Köster, U., Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
4.Schultz, L., in Proc. MRS Europe Meeting on Amorphous Metals and Non-Equilibrium Processing, edited by von Allmen, M., Les Editions de Physique, Les Ulis-Cedex, France, 1985, p. 135.Google Scholar
5.Schultz, L., in Proc. 5th Int. Conf. on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North Holland, Amsterdam, 1984), p. 1585.Google Scholar
6.Atzmon, M., Verhoeven, J. D., Gibson, J. D., and Johnson, W. L., in Proc. 5th Int. Conf. on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North Holland, Amsterdam, 1984), p. 1561.Google Scholar
7.Johnson, W. L., Mater. Sci. Eng. 97, 1 (1988).CrossRefGoogle Scholar
8.Schultz, L., in Science and Technology of Rapidly Quenched Alloys, edited by Tenhover, M., Johnson, W. L., and Tanner, L. E. (Mater. Res. Soc. Symp. Proc. 80, Pittsburgh, PA, 1987), p. 97.Google Scholar
9.Krebs, H. U. and Samwer, K., Europhys. Lett. 2, 141 (1986).CrossRefGoogle Scholar
10.van Rossum, M., Nicolet, M-A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).CrossRefGoogle Scholar
11.Samwer, K., J. Less-Common Met. 145, 25 (1988).CrossRefGoogle Scholar
12.Schultz, L., Z. Phys. Chem. 157, 257 (1988).CrossRefGoogle Scholar
13.Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).CrossRefGoogle Scholar
14.Highmore, R. J., Evetts, J. E., Greer, A. L., and Somekh, R. E., Appl. Phys. Lett. 50, 566 (1987).CrossRefGoogle Scholar
15.Schultz, L., in Proc. NATO Adv. Study Inst. on Amorphous and Liquid Materials, edited by Liischer, E., Fritsch, G., and Jacucci, G., Passo della Mendola, 1985, p. 508.Google Scholar
16.Cheng, Y. T., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
17.Atzmon, M. and Spaepen, F., in Science and Technology of Rapidly Quenched Alloys, edited by Tenhover, M., Johnson, W. L., and Tanner, L. E. (Mater. Res. Soc. Symp. Proc. 80, Pittsburgh, PA, 1987), p. 55.Google Scholar
18.Kissinger, H.E., Anal. Chem. 29, 1703 (1959).Google Scholar
19.Barbour, J. C., Phys. Rev. Lett. 55, 2872 (1985).CrossRefGoogle Scholar
20.Unruh, K. M., Meng, W. J., Johnson, W. L., Thakoor, A. P., and Khanna, S. K., in Layered Structures, Epitaxy, and Interfaces, edited by Gibson, J. M. and Dawson, L. R. (Mater. Res. Soc. Symp. Proc. 37, Pittsburgh, PA, 1985), p. 551.Google Scholar
21.Hahn, H., Averback, R.S., and Rothman, S.J., Phys. Rev. B 33, 8825 (1986).CrossRefGoogle Scholar
22.Hahn, H., Averback, R. S., and Shyu, H-M., J. Less-Common Met. 142, 345 (1988).CrossRefGoogle Scholar
23.Hoshino, K., Averback, R. S., Hahn, H., and Rothman, S. J., J. Mater. Res. 3, 55 (1988).CrossRefGoogle Scholar
24.Cotts, E. J., Wong, G. C., and Johnson, W. L., Phys. Rev. B 37, 9049 (1988).CrossRefGoogle Scholar
25.Meng, W. J., Nieh, C.W., and Johnson, W. L., Appl. Phys. Lett. 51, 1693 (1987).CrossRefGoogle Scholar
26.Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1436 (1986).CrossRefGoogle Scholar
27.Bormann, R., Gärtner, F., and Zöltzer, K., J. Less-Common Met. 145, 19 (1988).CrossRefGoogle Scholar
28.Eckert, J., Schultz, L., Hellstern, E., and Urban, K., J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
29.Meng, W. J., Nieh, C. W., Ma, E., Fultz, B., and Johnson, W. L., Mater. Sci. Eng. 97, 87 (1988).CrossRefGoogle Scholar
30.Samwer, K., Phys. Rep. 161, 1 (1988).CrossRefGoogle Scholar
31.Samwer, K., Schröder, H., and Moske, M., in Phase Transitions in Condensed Systems — Experiments and Theory, edited by Cargill, G. S. III, Spaepen, F., and Tu, K-N. (Mater. Res. Soc. Symp. Proc. 57, Pittsburgh, PA, 1987), p. 405.Google Scholar
32.Samwer, K., Schröder, H., and Pampus, K., Mater. Sci. Eng. 97, 63 (1988).CrossRefGoogle Scholar
33.Highmore, R. J., Greer, A. L., Leake, J. A., and Evetts, J. E., Mater. Lett. 6, 401 (1988).CrossRefGoogle Scholar
34.Vredenberg, A. M., Westendorp, J. F. M., Saris, F. W., van der Pers, N. M., and de Keijser, T. H., J. Mater. Res. 1, 774 (1986).CrossRefGoogle Scholar
35.Pampus, K., Samwer, K., and Bottiger, J., Europhys. Lett. 3, 581 (1987).CrossRefGoogle Scholar
36.Schwarz, R. B., Mater. Res. Soc. Bull. May/June, 55 (1986).CrossRefGoogle Scholar
37.Weeber, A. W. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar