Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:50:20.745Z Has data issue: false hasContentIssue false

Interactions between bismuth oxide and ceramic substrates for thick film technology

Published online by Cambridge University Press:  31 January 2011

Simona Immovilli
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) and Department of Physics, University of Modena, 41100 Modena, Italy
Bruno Morten
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) and Department of Physics, University of Modena, 41100 Modena, Italy
Maria Prudenziati
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM) and Department of Physics, University of Modena, 41100 Modena, Italy
Alessandro Gualtieri
Affiliation:
Department of Earth Sciences, University of Modena, 4100 Modena, Italy
Massimo Bersani
Affiliation:
CMBM (Centre of Medical Biophysics and Materials), Povo, Trento, Italy
Get access

Extract

We investigated the interactions between screen printed and fired layers of Bi2O3 and ceramic substrates of alumina and beryllia. It was found that the reaction products are invariably crystalline in nature. Several transitions of Bi2O3 in its polymorphic phases were found to occur on BeO substrates, while newly formed compounds have been observed to grow on alumina substrates, i.e., Al4Bi2O9 on 99.9% Al2O3 and Bi12SiO20 on 96% Al2O3. Bismuth deeply penetrates in the ceramic interstices in all the cases. Until Bi2O3 is not completely reacted, this penetration is diffusion limited (penetration depth , where td is the reaction time) with values of the activation energy ranging from 3.7 ± 0.6 eV (BeO substrate) to 1.4 ± 0.06 eV (96% Al2O3 substrate). It is shown that these processes are notably different to those occurring in PbO/ceramic systems; moreover, they imply different adhesion phenomena of thick films on different substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bersani, M., Morten, B., Prudenziati, M., and Gualtieri, A., J. Mater. Res. 12, 501 (1997).CrossRefGoogle Scholar
2.Montesperelli, G., Bianco, A., Morten, B., Prudenziati, M., and Traversa, E., Fourth Euro Ceramics 5, 467 (1995).Google Scholar
3.Takao, H. and Matoba, K., “Oxygen sensor,” U.S. Patent 4,26,532, Nov. 21 (1978).Google Scholar
4.Pilliar, R. M., Carruthers, T. G., and Nutting, J., J. Mater. Sci. 2, 28 (1967).CrossRefGoogle Scholar
5.Ohuchi, F. S., J. Am. Ceram. Soc. 74, 1163 (1991).CrossRefGoogle Scholar
6.Peden, C. H., Kidd, K. B., and Shinn, N. D., J. Vac. Sci. Technol. A9, 1518 (1991).CrossRefGoogle Scholar
7.Pepper, S. V., J. Appl. Phys. 47, 801 (1976).CrossRefGoogle Scholar
8.Kuo, C. C. Y., Proc. Int. Symp. Hybrid Microelect. (ISHM '87), 562 (1987).Google Scholar
9.Speranskaya, E.et al., Inorg. Mater. USSR 6, 1201 (1970).Google Scholar
10.Geller, R. F. and Bunting, E. N., J. Res. Nat. Bur. Stand. 31, 257 (1943).CrossRefGoogle Scholar
11.Morten, B., De Cicco, G., and Tonelli, C., Hybrid Circuits No. 28, 25 (1992).Google Scholar
12.Bish, D. L. and Post, J. E., in Modern Powder Diffraction Reviews in Mineralogy, edited by Ribbe, P. (Min. Soc. of America, 1989), Vol. 20.CrossRefGoogle Scholar
13.Shabanova, E. B., Tr Gor'k Politekh inst. Im. A. A. Zhdanova 23, 28 (1967).Google Scholar
14.Sillen, L. G., Zeitschr. Kristallogr A103, 274 (1941); Arkiv. Kemi Min. Geol. A12 (18) (1937).Google Scholar
15.Gualtieri, A., Immovilli, S., and Prudenziati, M., Powder Diffraction 12, 90 (1997).CrossRefGoogle Scholar
16.Bokii, G. B., Introduction to Chemical Crystallography (Izd. Mosk. Univ., Moscow, 1954).Google Scholar
17.Gattow, G. and Schröder, H. Z., Z. Anorg. Allgem. Chem. 318, 176 (1962).CrossRefGoogle Scholar
18.Holmes, P. J. and Loasby, R. G., Handbook of Thick Film Technology (Electrochemical Publications Ltd., Ayr, Scotland, 1976).Google Scholar
19.Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
20.Greiner, M. E. and Gibbons, J. F., J. Appl. Phys. 57, 5581 (1985).CrossRefGoogle Scholar
21.Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).CrossRefGoogle Scholar