Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T08:44:44.631Z Has data issue: false hasContentIssue false

Inorganic islands on a highly stretchable polyimide substrate

Published online by Cambridge University Press:  31 January 2011

Jeong-Yun Sun
Affiliation:
Department of Material Science and Engineering, Seoul National University, Seoul 151-742, South Korea; and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Nanshu Lu
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Juil Yoon
Affiliation:
Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792, South Korea
Kyu-Hwan Oh
Affiliation:
Department of Material Science and Engineering, Seoul National University, Seoul 151-742, South Korea
Zhigang Suo
Affiliation:
Department of Material Science and Engineering, Seoul National University, Seoul 151-742, South Korea; and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Joost J. Vlassak*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a) Address all correspondence to this author. email: [email protected]
Get access

Abstract

For a flexible electronic device integrating inorganic materials on a polymer substrate, the polymer can deform substantially, but the inorganic materials usually fracture at small strains. This paper describes an approach to make such a device highly stretchable. A polyimide substrate is first coated with a thin layer of an elastomer, on top of which SiNx islands are fabricated. When the substrate is stretched to a large strain, the SiNx islands remain intact. Calculations confirm that the elastomer reduces the strain in the SiNx islands by orders of magnitude.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P.: Paper-like electronic displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks. PNAS 98, 4835 (2001).CrossRefGoogle ScholarPubMed
2.Bonderover, E. and Wagner, S.: A woven inverter circuit for e-textile applications. IEEE Electron Device Lett. 25, 295 (2004).CrossRefGoogle Scholar
3.Brabec, C.J.: Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 83, 273 (2004).CrossRefGoogle Scholar
4.Abad, E., Zampolli, S., Marco, S., Scorzoni, A., Mazzolai, B., Juarros, A., Gmez, D., Elmi, I., Cardinali, G.C., Gmez, J.M., Palacio, F., Cicioni, M., Mondini, A., Becker, T., and Sayhan, I.: Flexible tag microlab developmentGas sensors integration in RFID flexible tags for food logistic. Sens. Actuators, B 127, 2 (2007).CrossRefGoogle Scholar
5.Kim, D-H., Kim, Y-S., Wu, J., Liu, Z., Song, J., Kim, H-S., Huang, Y., Hwang, K-C., and Rogers, J.A.: Ultrathin silicon circuits with strain isolation layers and mesh layouts for high performance electronics on fabric, vinyl, leather and paper. Adv. Mater. 21, 1 (2009).CrossRefGoogle Scholar
6.Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T.: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. PNAS 102, 12321 (2005).CrossRefGoogle ScholarPubMed
7.Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C-J., Geddes, J.B., Xiao, J., Wang, S., Huang, Y., and Rogers, J.A.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748 (2008).CrossRefGoogle ScholarPubMed
8.oh, H-J., Isono, Y., Namazu, T., Saito, Y., and Yamaguchi, A.: Influence of gas flow ratio in PE-CVD process on mechanical properties of silicon nitride film. IEEJ Trans. Electr. Electron. Eng. 3, 281 (2008).CrossRefGoogle Scholar
9.Lacour, S.P., Wagner, S., Narayan, R.J., Li, T., and Suo, Z.: Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 100, 014913 (2006).CrossRefGoogle Scholar
10.Hsu, P.I., Bhattacharya, R., Gleskova, H., Huang, M., Xi, Z., Suo, Z., Wagner, S., and Sturm, J.C.: Thin-film transistor circuits on large-area spherical surfaces. Appl. Phys. Lett. 81, 1723 (2002).CrossRefGoogle Scholar
11.Bhattacharya, R., Wagner, S., Tung, Y-J., Esler, J.R., and Hack, M.: organic LED pixel array on a dome. Proc. IEEE 93, 1273 (2005).CrossRefGoogle Scholar
12.Khang, D-Y., Jiang, H., Huang, Y., and Rogers, J.A.: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208 (2006).CrossRefGoogle ScholarPubMed
13.Kim, D-H., Ahn, J-H., Choi, W.M., Kim, H-S., Kim, T-H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., and Rogers, J.A.: Stretchable and foldable silicon integrated circuits. Science 320, 507 (2008).CrossRefGoogle ScholarPubMed
14.Gleskova, H., Wagner, S., and Suo, Z.: Failure resistance of amorphous silicon transistors under extreme in-plane strain. Appl. Phys. Lett. 75, 3011 (1999).CrossRefGoogle Scholar
15.Bhattacharya, R., Salomon, A., and Wagner, S.: Fabricating metal interconnects for circuits on a spherical dome. J. Electrochem. Soc. 153, G259 (2006).CrossRefGoogle Scholar
16.Tabata, O., Kawahata, K., Sugiyama, S., and Igarashi, I.: Mechanical property measurements of thin films using load-deflection of composite rectangular membranes. Sens. Actuators 20, 135 (1989).CrossRefGoogle Scholar
17.Yoo, S.H., Cohen, C., and Hui, C-Y.: Mechanical and swelling properties of PDMS interpenetrating polymer networks. Polymer 47, 6226 (2006).CrossRefGoogle Scholar
18. The data sheet of Upilex-S (UBE Industries, Ltd., Tokyo, Japan).Google Scholar
19.Larsen, A.L., Hansen, K., Sommer-Larsen, P., Hassager, O., Bach, A., Ndoni, S., and Jorgensen, M.: Elastic properties of nonstoichiometric reacted PDMS networks. Macromolecules 36, 10063 (2003).CrossRefGoogle Scholar
20.Xia, Z.C. and Hutchinson, J.W.: Crack patterns in thin films. J. Mech. Phys. Solids 48, 1107 (2000).CrossRefGoogle Scholar
21.Lu, N., Yoon, J., and Suo, Z.: Delamination of stiff islands patterned on stretchable substrates. Int. J. Mater. Res. 98, 717 (2007).CrossRefGoogle Scholar