Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T00:56:55.653Z Has data issue: false hasContentIssue false

Inorganic dissolvable electronics: materials and devices for biomedicine and environment

Published online by Cambridge University Press:  23 August 2016

Huanyu Cheng*
Affiliation:
Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Recent advancement of inorganic dissolvable electronics nucleates around a realization that single-crystal silicon nanomembrane undergoes hydrolysis in biologically relevant conditions. The silicon-based high-performance dissolvable electronic devices are initially conceived for biomedical implants that function for a programmed timeframe followed by a complete dissolution to eliminate the need for recollection. The technology developed for biomedicine also presents unique opportunities in security devices that physically destruct and in environmentally benign electronics that dissolve without a trace to reduce electronic wastes. The new class of devices with this emerging technology complements the existing efforts in organic biodegradable devices. Compatible with state-of-the-art fabrication facilities for commercial microelectronics, the technology has a huge potential for future commercialization. This mini review will first discuss the relevant materials for the inorganic dissolvable electronics and then present the demonstrated applications in functional devices, followed by a perspective for the future developments.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bristow, M.R., Saxon, L.A., Boehmer, J., Krueger, S., Kass, D.A., De Marco, T., Carson, P., DiCarlo, L., DeMets, D., White, B.G., DeVries, D.W., and Feldman, A.M.: Comparison of medical therapy and I. Defibrillation in heart failure: Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350(21), 2140 (2004).CrossRefGoogle ScholarPubMed
Rose, E.A., Gelijns, A.C., Moskowitz, A.J., Heitjan, D.F., Stevenson, L.W., Dembitsky, W., Long, J.W., Ascheim, D.D., Tierney, A.R., Levitan, R.G., Watson, J.T., Meier, P., Ronan, N.S., Shapiro, P.A., Lazar, R.M., Miller, L.W., Gupta, L., Frazier, O.H., Desvigne-Nickens, P., Oz, M.C., and Poirier, V.L.: Randomized evaluation of mechanical assistance for the treatment of congestive heart failure study: Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345(20), 1435 (2001).CrossRefGoogle ScholarPubMed
Irnich, W.: Electronic security systems and active implantable medical devices. Pacing Clin. Electrophysiol. 25(8), 1235 (2002).CrossRefGoogle ScholarPubMed
Vallet-Regi, M., Balas, F., and Arcos, D.: Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. Engl. 46(40), 7548 (2007).CrossRefGoogle ScholarPubMed
LaVan, D.A., McGuire, T., and Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10), 1184 (2003).CrossRefGoogle ScholarPubMed
Williams, D.F.: On the mechanisms of biocompatibility. Biomaterials 29(20), 2941 (2008).CrossRefGoogle ScholarPubMed
Lebedev, M.A. and Nicolelis, M.A.: Brain-machine interfaces: Past, present and future. Trends Neurosci. 29(9), 536 (2006).CrossRefGoogle ScholarPubMed
Rousche, P.J., Pellinen, D.S., Pivin, D.P. Jr., Williams, J.C., Vetter, R.J., and Kipke, D.R.: Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3), 361 (2001).CrossRefGoogle ScholarPubMed
Colton, C.K.: Implantable biohybrid artificial organs. Cell Transplant. 4(4), 415 (1995).CrossRefGoogle ScholarPubMed
Lendlein, A. and Langer, R.: Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673 (2002).CrossRefGoogle ScholarPubMed
Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., and Rudzinski, W.E.: Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70(1–2), 1 (2001).CrossRefGoogle ScholarPubMed
Kamath, K.R. and Park, K.: Biodegradable hydrogels in drug-delivery. Adv. Drug Delivery Rev. 11(1–2), 59 (1993).CrossRefGoogle Scholar
Tobias, I.S., Lee, H., Engelmayr, G.C. Jr., Macaya, D., Bettinger, C.J., and Cima, M.J.: Zero-order controlled release of ciprofloxacin-HCl from a reservoir-based, bioresorbable and elastomeric device. J Controlled Release 146(3), 356 (2010).CrossRefGoogle ScholarPubMed
Peuster, M., Wohlsein, P., Brugmann, M., Ehlerding, M., Seidler, K., Fink, C., Brauer, H., Fischer, A., and Hausdorf, G.: A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—Results 6–18 months after implantation into New Zealand white rabbits. Heart 86(5), 563 (2001).CrossRefGoogle ScholarPubMed
Moravej, M. and Mantovani, D.: Biodegradable metals for cardiovascular stent application: Interests and new opportunities. Int. J. Mol. Sci. 12(7), 4250 (2011).CrossRefGoogle ScholarPubMed
Cavusoglu, T., Yavuzer, R., Basterzi, Y., Tuncer, S., and Latifoglu, O.: Resorbable plate-screw systems: Clinical applications. Ulus Travma Acil Cerrahi Derg. 11(1), 43 (2005).Google ScholarPubMed
Fu, K.K., Wang, Z.Y., Dai, J.Q., Carter, M., and Hu, L.B.: Transient electronics: Materials and devices. Chem. Mater. 28(11), 3527 (2016).CrossRefGoogle Scholar
Cheng, H. and Vepachedu, V.: Recent development of transient electronics. Theor. Appl. Mech. Lett. 6(1), 21 (2016).CrossRefGoogle Scholar
Zhang, Y., Lu, B., Xu, H., and Feng, X.: Recent progress in transient electronics. Sci. Sin.-Phys. Mech. Astron. 46(4), 44605 (2016).CrossRefGoogle Scholar
Kim, D.-H., Kim, Y.-S., Amsden, J., Panilaitis, B., Kaplan, D.L., Omenetto, F.G., Zakin, M.R., and Rogers, J.A.: Erratum: Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett. 95, 133701 (2009).CrossRefGoogle Scholar
Bettinger, C.J. and Bao, Z.: Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22(5), 651 (2010).CrossRefGoogle ScholarPubMed
Kim, D.H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y.S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y., Hwang, K.C., Zakin, M.R., Litt, B., and Rogers, J.A.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511 (2010).CrossRefGoogle ScholarPubMed
Nery, P.B., Fernandes, R., Nair, G.M., Sumner, G.L., Ribas, C.S., Menon, S.M.D., Wang, X., Krahn, A.D., Morillo, C.A., and Connolly, S.J.: Device-related infection among patients with pacemakers and implantable defibrillators: Incidence, risk factors, and Consequences. J. Cardiovasc. Electrophysiol. 21(7), 786 (2010).CrossRefGoogle ScholarPubMed
Hwang, S.W., Tao, H., Kim, D.H., Cheng, H., Song, J.K., Rill, E., Brenckle, M.A., Panilaitis, B., Won, S.M., Kim, Y.S., Song, Y.M., Yu, K.J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D.L., Zakin, M.R., Slepian, M.J., Huang, Y., Omenetto, F.G., and Rogers, J.A.: A physically transient form of silicon electronics. Science 337(6102), 1640 (2012).CrossRefGoogle ScholarPubMed
Carlson, A., Bowen, A.M., Huang, Y., Nuzzo, R.G., and Rogers, J.A.: Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284 (2012).CrossRefGoogle ScholarPubMed
Carlson, A., Wang, S.D., Elvikis, P., Ferreira, P.M., Huang, Y.G., and Rogers, J.A.: Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing. Adv. Funct. Mater. 22(21), 4476 (2012).CrossRefGoogle Scholar
Carlson, A., Kim-Lee, H.J., Wu, J., Elvikis, P., Cheng, H.Y., Kovalsky, A., Elgan, S., Yu, Q.M., Ferreira, P.M., Huang, Y.G., Turner, K.T., and Rogers, J.A.: Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 98(26), 264104 (2011).CrossRefGoogle Scholar
Yang, S.Y., Carlson, A., Cheng, H., Yu, Q., Ahmed, N., Wu, J., Kim, S., Sitti, M., Ferreira, P.M., Huang, Y., and Rogers, J.A.: Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Adv Mater. 24(16), 2117 (2012).CrossRefGoogle ScholarPubMed
Feng, X., Cheng, H., Bowen, A.M., Carlson, A.W., Nuzzo, R.G., and Rogers, J.A.: A finite-deformation mechanics theory for kinetically controlled transfer printing. J. Appl. Mech. 80(6), 061023 (2013).CrossRefGoogle Scholar
Kim, S., Carlson, A., Cheng, H.Y., Lee, S., Park, J.K., Huang, Y.G., and Rogers, J.A.: Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Appl. Phys. Lett. 100(17), 171909 (2012).CrossRefGoogle Scholar
Kang, S.K., Murphy, R.K., Hwang, S.W., Lee, S.M., Harburg, D.V., Krueger, N.A., Shin, J., Gamble, P., Cheng, H., Yu, S., Liu, Z., McCall, J.G., Stephen, M., Ying, H., Kim, J., Park, G., Webb, R.C., Lee, C.H., Chung, S., Wie, D.S., Gujar, A.D., Vemulapalli, B., Kim, A.H., Lee, K.M., Cheng, J., Huang, Y., Lee, S.H., Braun, P.V., Ray, W.Z., and Rogers, J.A.: Bioresorbable silicon electronic sensors for the brain. Nature 530(7588), 71 (2016).CrossRefGoogle ScholarPubMed
Yu, K.J., Kuzum, D., Hwang, S.W., Kim, B.H., Juul, H., Kim, N.H., Won, S.M., Chiang, K., Trumpis, M., Richardson, A.G., Cheng, H., Fang, H., Thompson, M., Bink, H., Talos, D., Seo, K.J., Lee, H.N., Kang, S.K., Kim, J.H., Lee, J.Y., Huang, Y., Jensen, F.E., Dichter, M.A., Lucas, T.H., Viventi, J., Litt, B., and Rogers, J.A.: Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782 (2016).CrossRefGoogle ScholarPubMed
Jung, Y.H., Chang, T.H., Zhang, H., Yao, C., Zheng, Q., Yang, V.W., Mi, H., Kim, M., Cho, S.J., Park, D.W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S., and Ma, Z.: High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun. 6, 7170 (2015).CrossRefGoogle ScholarPubMed
Robinson, B.H.: E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 408(2), 183 (2009).CrossRefGoogle ScholarPubMed
Lee, C.H., Jeong, J.W., Liu, Y.H., Zhang, Y.H., Shi, Y., Kang, S.K., Kim, J., Kim, J.S., Lee, N.Y., Kim, B.H., Jang, K.I., Yin, L., Kim, M.K., Banks, A., Paik, U., Huang, Y.G., and Rogers, J.A.: Materials and wireless microfluidic systems for electronics capable of chemical dissolution on demand. Adv. Funct. Mater. 25(9), 1338 (2015).CrossRefGoogle Scholar
Xu, F., Lu, T.J., Seffen, K.A., and Ng, E.Y.K.: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62(5), 050801 (2009).CrossRefGoogle Scholar
Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 58(15), 1655 (2006).CrossRefGoogle ScholarPubMed
Hwang, S.W., Park, G., Cheng, H., Song, J.K., Kang, S.K., Yin, L., Kim, J.H., Omenetto, F.G., Huang, Y., Lee, K.M., and Rogers, J.A.: 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Adv Mater. 26(13), 1992 (2014).CrossRefGoogle ScholarPubMed
Seidel, H., Csepregi, L., Heuberger, A., and Baumgartel, H.: Anisotropic etching of crystalline silicon in alkaline-solutions. 1. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612 (1990).CrossRefGoogle Scholar
Cheng, H.Y., Wu, J., Yu, Q.M., Kim-Lee, H.J., Carlson, A., Turner, K.T., Hwang, K.C., Huang, Y.G., and Rogers, J.A.: An analytical model for shear-enhanced adhesiveless transfer printing. Mech. Res. Commun. 43, 46 (2012).CrossRefGoogle Scholar
Yin, L., Farimani, A.B., Min, K., Vishal, N., Lam, J., Lee, Y.K., Aluru, N.R., and Rogers, J.A.: Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv. Mater. 27(11), 1857 (2015).CrossRefGoogle ScholarPubMed
Hwang, S.W., Park, G., Edwards, C., Corbin, E.A., Kang, S.K., Cheng, H., Song, J.K., Kim, J.H., Yu, S., Ng, J., Lee, J.E., Kim, J., Yee, C., Bhaduri, B., Su, Y., Omennetto, F.G., Huang, Y., Bashir, R., Goddard, L., Popescu, G., Lee, K.M., and Rogers, J.A.: Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 8(6), 5843 (2014).CrossRefGoogle ScholarPubMed
Seidel, H., Csepregi, L., Heuberger, A., and Baumgartel, H.: Anisotropic etching of crystalline silicon in alkaline-solutions. 2. Influence of dopants. J. Electrochem. Soc. 137(11), 3626 (1990).CrossRefGoogle Scholar
Kang, S.K., Park, G., Kim, K., Hwang, S.W., Cheng, H.Y., Shin, J.H., Chung, S.J., Kim, M., Yin, L., Lee, J.C., Lee, K.M., and Rogers, J.A.: Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 7(17), 9297 (2015).CrossRefGoogle ScholarPubMed
Roberts, M.E., Mannsfeld, S.C., Queraltó, N., Reese, C., Locklin, J., Knoll, W., and Bao, Z.: Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. 105(34), 12134 (2008).CrossRefGoogle ScholarPubMed
Irimia-Vladu, M., Glowacki, E.D., Voss, G., Bauer, S., and Sariciftci, N.S.: Green and biodegradable electronics. Mater. Today 15(7–8), 340 (2012).CrossRefGoogle Scholar
Irimia-Vladu, M., Głowacki, E.D., Troshin, P.A., Schwabegger, G., Leonat, L., Susarova, D.K., Krystal, O., Ullah, M., Kanbur, Y., and Bodea, M.A.: Indigo-a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24(3), 375 (2012).CrossRefGoogle ScholarPubMed
Irimia-Vladu, M., Troshin, P.A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., Bodea, M., Schwödiauer, R., Mumyatov, A., and Fergus, J.W.: Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069 (2010).CrossRefGoogle Scholar
Dagdeviren, C., Hwang, S.W., Su, Y., Kim, S., Cheng, H., Gur, O., Haney, R., Omenetto, F.G., Huang, Y., and Rogers, J.A.: Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9(20), 3398 (2013).CrossRefGoogle ScholarPubMed
Liu, C.: Foundations of MEMS (Upper Saddle River, Pearson Education, 2012).Google Scholar
Irimia-Vladu, M.: “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43(2), 588 (2014).CrossRefGoogle ScholarPubMed
Zhong, C., Wu, J., Reinhart-King, C., and Chu, C.: Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater. 6(10), 3908 (2010).CrossRefGoogle ScholarPubMed
Zhong, C., Deng, Y., Roudsari, A.F., Kapetanovic, A., Anantram, M.P., and Rolandi, M.: A polysaccharide bioprotonic field-effect transistor. Nat Commun. 2, 476 (2011).CrossRefGoogle ScholarPubMed
Zelikin, A.N., Lynn, D.M., Farhadi, J., Martin, I., Shastri, V., and Langer, R.: Erodible conducting polymers for potential biomedical applications. Angew. Chem., Int. Ed. Engl. 41(1), 141 (2002).3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Rivers, T.J., Hudson, T.W., and Schmidt, C.E.: Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater. 12(1), 33 (2002).3.0.CO;2-E>CrossRefGoogle Scholar
Muskovich, M. and Bettinger, C.J.: Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv. Healthcare Mater. 1(3), 248 (2012).CrossRefGoogle ScholarPubMed
Trumbo, P., Yates, A.A., Schlicker, S., and Poos, M.: Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101(3), 294 (2001).CrossRefGoogle ScholarPubMed
Zheng, Y., Gu, X., and Witte, F.: Biodegradable metals. Mater. Sci. Eng. R Rep. 77, 1 (2014).CrossRefGoogle Scholar
Yin, L., Cheng, H.Y., Mao, S.M., Haasch, R., Liu, Y.H., Xie, X., Hwang, S.W., Jain, H., Kang, S.K., Su, Y.W., Li, R., Huang, Y.G., and Rogers, J.A.: Dissolvable metals for transient electronics. Adv. Funct. Mater. 24(5), 645 (2014).CrossRefGoogle Scholar
Anik, M. and Osseo-Asare, K.: Effect of pH on the anodic behavior of tungsten. J. Electrochem. Soc. 149(6), B224 (2002).CrossRefGoogle Scholar
Song, G. and Song, S.: A possible biodegradable magnesium implant material. Adv. Eng. Mater. 9(4), 298 (2007).CrossRefGoogle Scholar
Li, Z.J., Gu, X.N., Lou, S.Q., and Zheng, Y.F.: The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10), 1329 (2008).CrossRefGoogle ScholarPubMed
Revie, R.W. and Uhlig, H.H.: Uhlig's Corrosion Handbook (Hoboken, John Wiley & Sons, 2011).CrossRefGoogle Scholar
Li, R., Cheng, H., Su, Y., Hwang, S-W., Yin, L., Tao, H., Brenckle, M.A., Kim, D-H., Omenetto, F.G., Rogers, J.A., and Huang, Y.: An analytical model of reactive diffusion for transient electronics. Adv. Funct. Mater. 23(24), 3106 (2013).CrossRefGoogle Scholar
Danckwerts, P.V.: Absorption by simultaneous diffusion and chemical reaction. Trans. Faraday Soc. 46(4–5), 300 (1950).CrossRefGoogle Scholar
Hwang, S.W., Song, J.K., Huang, X., Cheng, H., Kang, S.K., Kim, B.H., Kim, J.H., Yu, S., Huang, Y., and Rogers, J.A.: High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater. 26(23), 3905 (2014).CrossRefGoogle ScholarPubMed
Kim, D.H., Song, J., Choi, W.M., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y.Y., Hwang, K.C., Zhang, Y.W., and Rogers, J.A.: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105(48), 18675 (2008).CrossRefGoogle ScholarPubMed
Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., and Rogers, J.A.: Stretchable and foldable silicon integrated circuits. Science 320(5875), 507 (2008).CrossRefGoogle ScholarPubMed
Ying, M., Bonifas, A.P., Lu, N., Su, Y., Li, R., Cheng, H., Ameen, A., Huang, Y., and Rogers, J.A.: Silicon nanomembranes for fingertip electronics. Nanotechnology 23(34), 344004 (2012).CrossRefGoogle ScholarPubMed
Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y., Yu, K.J., Cheng, H., Shi, M., Bian, Z., Liu, Z., Kim, Y.S., Yeo, W.H., Park, J.S., Song, J., Li, Y., Huang, Y., Gorbach, A.M., and Rogers, J.A.: Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12(10), 938 (2013).CrossRefGoogle ScholarPubMed
Xu, L., Gutbrod, S.R., Bonifas, A.P., Su, Y., Sulkin, M.S., Lu, N., Chung, H.J., Jang, K.I., Liu, Z., Ying, M., Lu, C., Webb, R.C., Kim, J.S., Laughner, J.I., Cheng, H., Liu, Y., Ameen, A., Jeong, J.W., Kim, G.T., Huang, Y., Efimov, I.R., and Rogers, J.A.: 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).CrossRefGoogle ScholarPubMed
Kang, S.K., Hwang, S.W., Yu, S., Seo, J.H., Corbin, E.A., Shin, J., Wie, D.S., Bashir, R., Ma, Z., and Rogers, J.A.: Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 25(12), 1789 (2015).CrossRefGoogle Scholar
Nair, L.S. and Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762 (2007).CrossRefGoogle Scholar
Tian, H.Y., Tang, Z.H., Zhuang, X.L., Chen, X.S., and Jing, X.B.: Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37(2), 237 (2012).CrossRefGoogle Scholar
Khanra, S., Cipriano, T., Lam, T., White, T.A., Fileti, E.E., Alves, W.A., and Guha, S.: Self-assembled peptide–polyfluorene nanocomposites for biodegradable organic electronics. Adv. Mater. Interfaces 2(14), 1500265 (2015).CrossRefGoogle Scholar
Anderson, J.M. and Shive, M.S.: Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Delivery Rev. 64, 72 (2012).CrossRefGoogle Scholar
Middleton, J.C. and Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23), 2335 (2000).CrossRefGoogle ScholarPubMed
Hu, X., Shmelev, K., Sun, L., Gil, E-S., Park, S-H., Cebe, P., and Kaplan, D.L.: Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12(5), 1686 (2011).CrossRefGoogle ScholarPubMed
Wang, X., Kluge, J.A., Leisk, G.G., and Kaplan, D.L.: Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8), 1054 (2008).CrossRefGoogle ScholarPubMed
Zhang, L., Cao, Z., Bai, T., Carr, L., Ella-Menye, J-R., Irvin, C., Ratner, B.D., and Jiang, S.: Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31(6), 553 (2013).CrossRefGoogle ScholarPubMed
Kim, Y.J., Chun, S.E., Whitacre, J., and Bettinger, C.J.: Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1(31), 3781 (2013).CrossRefGoogle ScholarPubMed
Chang, J.W., Wang, C.G., Huang, C.Y., Tsai, T.D., Guo, T.F., and Wen, T.C.: Chicken albumen dielectrics in organic field-effect transistors. Adv Mater. 23(35), 4077 (2011).CrossRefGoogle ScholarPubMed
Hamedi, M.M., Ainla, A., Guder, F., Christodouleas, D.C., Fernandez-Abedul, M.T., and Whitesides, G.M.: Integrating electronics and microfluidics on paper. Adv Mater. 28(25), 5054 (2016).CrossRefGoogle ScholarPubMed
Zschieschang, U., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., and Klauk, H.: Organic electronics on banknotes. Adv Mater. 23(5), 654 (2011).CrossRefGoogle ScholarPubMed
Russo, A., Ahn, B.Y., Adams, J.J., Duoss, E.B., Bernhard, J.T., and Lewis, J.A.: Pen-on-paper flexible electronics. Adv Mater. 23(30), 3426 (2011).CrossRefGoogle ScholarPubMed
Nyholm, L., Nystrom, G., Mihranyan, A., and Stromme, M.: Toward flexible polymer and paper-based energy storage devices. Adv Mater. 23(33), 3751 (2011).CrossRefGoogle ScholarPubMed
Tobjork, D. and Osterbacka, R.: Paper electronics. Adv Mater. 23(17), 1935 (2011).CrossRefGoogle ScholarPubMed
Zhu, H.L., Xiao, Z.G., Liu, D.T., Li, Y.Y., Weadock, N.J., Fang, Z.Q., Huang, J.S., and Hu, L.B.: Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6(7), 2105 (2013).CrossRefGoogle Scholar
Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J., and Hu, L.: Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106 (2013).CrossRefGoogle ScholarPubMed
Jin, J., Lee, D., Im, H.G., Han, Y.C., Jeong, E.G., Rolandi, M., Choi, K.C., and Bae, B.S.: Chitin nanofiber transparent paper for flexible green electronics. Adv Mater. 28(26), 5169 (2016).CrossRefGoogle ScholarPubMed
Kang, S.K., Hwang, S.W., Cheng, H.Y., Yu, S., Kim, B.H., Kim, J.H., Huang, Y.G., and Rogers, J.A.: Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24(28), 4427 (2014).CrossRefGoogle Scholar
Brady, P.V. and Walther, J.V.: Kinetics of quartz dissolution at low-temperatures. Chem. Geol. 82(3–4), 253 (1990).CrossRefGoogle Scholar
Bergstrom, L. and Bostedt, E.: Surface-chemistry of silicon-nitride powders—Electrokinetic behavior and ESCA studies. Colloids Surf. 49(3–4), 183 (1990).CrossRefGoogle Scholar
Dameron, A.A., Davidson, S.D., Burton, B.B., Carcia, P.F., McLean, R.S., and George, S.M.: Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 112(12), 4573 (2008).CrossRefGoogle Scholar
Brenckle, M.A., Cheng, H., Hwang, S., Tao, H., Paquette, M., Kaplan, D.L., Rogers, J.A., Huang, Y., and Omenetto, F.G.: Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Appl. Mater. Interfaces 7(36), 19870 (2015).CrossRefGoogle ScholarPubMed
Acar, H., Çınar, S., Thunga, M., Kessler, M.R., Hashemi, N., and Montazami, R.: Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv. Funct. Mater. 24(26), 4135 (2014).CrossRefGoogle Scholar
Hwang, S.W., Huang, X., Seo, J.H., Song, J.K., Kim, S., Hage-Ali, S., Chung, H.J., Tao, H., Omenetto, F.G., Ma, Z., and Rogers, J.A.: Materials for bioresorbable radio frequency electronics. Adv. Mater. 25(26), 3526 (2013).CrossRefGoogle ScholarPubMed
Hwang, S.W., Kim, D.H., Tao, H., Kim, T.i., Kim, S., Yu, K.J., Panilaitis, B., Jeong, J.W., Song, J.K., and Omenetto, F.G.: Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Funct. Mater. 23(33), 4087 (2013).CrossRefGoogle Scholar
Jin, S.H., Shin, J., Cho, I-T., Han, S.Y., Lee, D.J., Lee, C.H., Lee, J-H., and Rogers, J.A.: Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 105(1), 013506 (2014).CrossRefGoogle Scholar
Hwang, S.W., Lee, C.H., Cheng, H., Jeong, J.W., Kang, S.K., Kim, J.H., Shin, J., Yang, J., Liu, Z., Ameer, G.A., Huang, Y., and Rogers, J.A.: Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15(5), 2801 (2015).CrossRefGoogle ScholarPubMed
Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J., and Rogers, J.A.: Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 26(23), 3879 (2014).CrossRefGoogle ScholarPubMed
Tsang, M., Armutlulu, A., Herrault, F., Shafer, R.H., Allen, S.A.B., and Allen, M.G.: Development of electroplated magnesium microstructures for biodegradable devices and energy sources. J. Microelectromech. Syst. 23(6), 1281 (2014).CrossRefGoogle Scholar
Boutry, C.M., Nguyen, A., Lawal, Q.O., Chortos, A., Rondeau-Gagne, S., and Bao, Z.: A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27(43), 6954 (2015).CrossRefGoogle ScholarPubMed
Sammoura, F., Lee, K.B., and Lin, L.W.: Water-activated disposable and long shelf life microbatteries. Sensor. Actuator. Phys. 111(1), 79 (2004).CrossRefGoogle Scholar
Xu, S., Zhang, Y., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J.A., Su, Y., Su, J., Zhang, H., Cheng, H., Lu, B., Yu, C., Chuang, C., Kim, T.I., Song, T., Shigeta, K., Kang, S., Dagdeviren, C., Petrov, I., Braun, P.V., Huang, Y., Paik, U., and Rogers, J.A.: Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).CrossRefGoogle ScholarPubMed
Fu, K.K., Wang, Z., Yan, C., Liu, Z., Yao, Y., Dai, J., Hitz, E., Wang, Y., Luo, W., and Chen, Y.: All-component transient lithium-ion batteries. Adv. Energy Mater. 6(10), 1502496 (2016).CrossRefGoogle Scholar
Ho, J.S., Yeh, A.J., Neofytou, E., Kim, S., Tanabe, Y., Patlolla, B., Beygui, R.E., and Poon, A.S.: Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. 111(22), 7974 (2014).CrossRefGoogle ScholarPubMed
Tao, H., Hwang, S.W., Marelli, B., An, B., Moreau, J.E., Yang, M., Brenckle, M.A., Kim, S., Kaplan, D.L., Rogers, J.A., and Omenetto, F.G.: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U. S. A. 111(49), 17385 (2014).CrossRefGoogle ScholarPubMed
Omenetto, F.G. and Kaplan, D.L.: New opportunities for an ancient material. Science 329(5991), 528 (2010).CrossRefGoogle ScholarPubMed
Grayson, A.C.R., Choi, I.S., Tyler, B.M., Wang, P.P., Brem, H., Cima, M.J., and Langer, R.: Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2(11), 767 (2003).CrossRefGoogle Scholar
Hwang, S.W., Kang, S.K., Huang, X., Brenckle, M.A., Omenetto, F.G., and Rogers, J.A.: Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 27(1), 47 (2015).CrossRefGoogle ScholarPubMed
Lee, C.H., Kang, S.K., Salvatore, G.A., Ma, Y.J., Kim, B.H., Jiang, Y., Kim, J.S., Yan, L.Q., Wie, D.S., Banks, A., Oh, S.J., Feng, X., Huang, Y.G., Troester, G., and Rogers, J.A.: Wireless microfluidic systems for programmed, functional transformation of transient electronic devices. Adv. Funct. Mater. 25(32), 5100 (2015).CrossRefGoogle Scholar
Xiang, Z., Wang, H., Pant, A., Pastorin, G., and Lee, C.: Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics 7(2), 026502 (2013).CrossRefGoogle ScholarPubMed
Sridharamurthy, S.S., Agarwal, A.K., Beebe, D.J., and Jiang, H.: Dissolvable membranes as sensing elements for microfluidics based biological/chemical sensors. Lab Chip 6(7), 840 (2006).CrossRefGoogle ScholarPubMed
Houghtaling, J., Liang, T., Thiessen, G., and Fu, E.: Dissolvable bridges for manipulating fluid volumes in paper networks. Anal. Chem. 85(23), 11201 (2013).CrossRefGoogle ScholarPubMed
Gorkin, R. III, Nwankire, C.E., Gaughran, J., Zhang, X., Donohoe, G.G., Rook, M., O'Kennedy, R., and Ducrée, J.: Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16), 2894 (2012).CrossRefGoogle ScholarPubMed
Seo, W. and Phillips, S.T.: Patterned plastics that change physical structure in response to applied chemical signals. J. Am. Chem. Soc. 132(27), 9234 (2010).CrossRefGoogle ScholarPubMed
Fu, K., Liu, Z., Yao, Y., Wang, Z., Zhao, B., Luo, W., Dai, J., Lacey, S.D., Zhou, L., Shen, F., Kim, M., Swafford, L., Sengupta, L., and Hu, L.: Transient rechargeable batteries triggered by cascade reactions. Nano Lett. 15(7), 4664 (2015).CrossRefGoogle ScholarPubMed
Park, C.W., Kang, S.K., Hernandez, H.L., Kaitz, J.A., Wie, D.S., Shin, J., Lee, O.P., Sottos, N.R., Moore, J.S., Rogers, J.A., and White, S.R.: Thermally triggered degradation of transient electronic devices. Adv. Mater. 27(25), 3783 (2015).CrossRefGoogle ScholarPubMed
Hernandez, H.L., Kang, S.K., Lee, O.P., Hwang, S.W., Kaitz, J.A., Inci, B., Park, C.W., Chung, S., Sottos, N.R., Moore, J.S., Rogers, J.A., and White, S.R.: Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 26(45), 7637 (2014).CrossRefGoogle ScholarPubMed
von Maltzahn, G., Park, J.H., Agrawal, A., Bandaru, N.K., Das, S.K., Sailor, M.J., and Bhatia, S.N.: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69(9), 3892 (2009).CrossRefGoogle ScholarPubMed
Hoare, T., Santamaria, J., Goya, G.F., Irusta, S., Lin, D., Lau, S., Padera, R., Langer, R., and Kohane, D.S.: A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9(10), 3651 (2009).CrossRefGoogle ScholarPubMed
Kim, J., Banks, A., Cheng, H., Xie, Z., Xu, S., Jang, K.I., Lee, J.W., Liu, Z., Gutruf, P., Huang, X., Wei, P., Liu, F., Li, K., Dalal, M., Ghaffari, R., Feng, X., Huang, Y., Gupta, S., Paik, U., and Rogers, J.A.: Epidermal electronics with advanced capabilities in near-field communication. Small 11(8), 906 (2015).CrossRefGoogle ScholarPubMed
Rogers, J.A., Someya, T., and Huang, Y.: Materials and mechanics for stretchable electronics. Science 327(5973), 1603 (2010).CrossRefGoogle ScholarPubMed
Kim, D.H., Lu, N., Ma, R., Kim, Y.S., Kim, R.H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.J., Keum, H., McCormick, M., Liu, P., Zhang, Y.W., Omenetto, F.G., Huang, Y., Coleman, T., and Rogers, J.A.: Epidermal electronics. Science 333(6044), 838 (2011).CrossRefGoogle ScholarPubMed
Zhang, Y., Fu, H., Su, Y., Xu, S., Cheng, H., Fan, J.A., Hwang, K-C., Rogers, J.A., and Huang, Y.: Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61(20), 7816 (2013).CrossRefGoogle Scholar
Fan, J.A., Yeo, W.H., Su, Y., Hattori, Y., Lee, W., Jung, S.Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R.J., Huang, Y., and Rogers, J.A.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).CrossRefGoogle ScholarPubMed
Kim, R.H., Bae, M.H., Kim, D.G., Cheng, H., Kim, B.H., Kim, D.H., Li, M., Wu, J., Du, F., Kim, H.S., Kim, S., Estrada, D., Hong, S.W., Huang, Y., Pop, E., and Rogers, J.: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3381 (2011).CrossRefGoogle ScholarPubMed
Yang, J., Webb, A.R., and Ameer, G.A.: Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16(6), 511 (2004).CrossRefGoogle Scholar
Lee, J., Wu, J., Shi, M., Yoon, J., Park, S.I., Li, M., Liu, Z., Huang, Y., and Rogers, J.A.: Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23(8), 986 (2011).CrossRefGoogle ScholarPubMed
Liu, Z., Cheng, H., and Wu, J.: Mechanics of solar module on structured substrates. J. Appl. Mech. 81(6), 064502 (2014).CrossRefGoogle Scholar
Norton, J.J., Lee, D.S., Lee, J.W., Lee, W., Kwon, O., Won, P., Jung, S-Y., Cheng, H., Jeong, J-W., and Akce, A.: Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. 112(13), 3920 (2015).CrossRefGoogle ScholarPubMed
Jeong, J.W., Kim, M.K., Cheng, H., Yeo, W.H., Huang, X., Liu, Y., Zhang, Y., Huang, Y., and Rogers, J.A.: Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthcare Mater. 3(5), 642 (2014).CrossRefGoogle ScholarPubMed
Jeong, J.W., Yeo, W.H., Akhtar, A., Norton, J.J., Kwack, Y.J., Li, S., Jung, S.Y., Su, Y., Lee, W., Xia, J., Cheng, H., Huang, Y., Choi, W.S., Bretl, T., and Rogers, J.A.: Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839 (2013).CrossRefGoogle ScholarPubMed
Jang, K.I., Han, S.Y., Xu, S., Mathewson, K.E., Zhang, Y., Jeong, J.W., Kim, G.T., Webb, R.C., Lee, J.W., Dawidczyk, T.J., Kim, R.H., Song, Y.M., Yeo, W.H., Kim, S., Cheng, H., Rhee, S.I., Chung, J., Kim, B., Chung, H.U., Lee, D., Yang, Y., Cho, M., Gaspar, J.G., Carbonari, R., Fabiani, M., Gratton, G., Huang, Y., and Rogers, J.A.: Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014).CrossRefGoogle ScholarPubMed
Huang, X., Liu, Y., Hwang, S.W., Kang, S.K., Patnaik, D., Cortes, J.F., and Rogers, J.A.: Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 26(43), 7371 (2014).CrossRefGoogle ScholarPubMed
Daniele, M.A., Knight, A.J., Roberts, S.A., Radom, K., and Erickson, J.S.: Sweet substrate: A polysaccharide nanocomposite for conformal electronic decals. Adv. Mater. 27(9), 1600 (2015).CrossRefGoogle ScholarPubMed
Reeder, J., Kaltenbrunner, M., Ware, T., Arreaga-Salas, D., Avendano-Bolivar, A., Yokota, T., Inoue, Y., Sekino, M., Voit, W., Sekitani, T., and Someya, T.: Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26(29), 4967 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Rodrigues, J., and Tomas, H.: Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193 (2012).CrossRefGoogle ScholarPubMed
Park, M.H., Joo, M.K., Choi, B.G., and Jeong, B.: Biodegradable thermogels. Acc. Chem. Res. 45(3), 424 (2012).CrossRefGoogle ScholarPubMed
Zhu, H., Jia, Z., Chen, Y., Weadock, N., Wan, J., Vaaland, O., Han, X., Li, T., and Hu, L.: Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 13(7), 3093 (2013).CrossRefGoogle ScholarPubMed