Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T17:54:22.891Z Has data issue: false hasContentIssue false

The influence of the Ti/Ba ratio on the formation of pyroelectric and piezoelectric quasi-amorphous films of BaTiO3

Published online by Cambridge University Press:  31 January 2011

David Ehre
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76200, Rehovot 76100, Israel
Vera Lyahovitskaya
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76200, Rehovot 76100, Israel
Igor Lubomirsky*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76200, Rehovot 76100, Israel
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The influence of the Ti/Ba ratio on the formation of pyroelectric and piezoelectric quasi-amorphous BaTiO3 films was investigated. Three types of films, Ti-rich, Ba-rich, and stoichiometric, were pulled through a temperature gradient or subjected to isothermal heating. The quasi-amorphous polar phase only formed in films pulled through the temperature gradient with Ti/Ba ratio within the broad range of 0.95–1.1. This implies that quasi-amorphous pyroelectric and piezoelectric thin films are significantly more tolerant of a deviation from stoichiometry than their crystalline counterparts.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lyahovitskaya, V., Zon, I., Feldman, Y., Cohen, S.R., Tagantsev, A.K.Lubomirsky, I.: Pyroelectricity in highly stressed quasi-amorphous thin films. Adv. Mater. 15(21), 1826 2003Google Scholar
2Frenkel, A.I., Feldman, Y., Lyahovitskaya, V., Wachtel, E.Lubomirsky, I.: Microscopic origin of polarity in quasi-amorphous BaTiO3. Phys. Rev. B 71(2), 024116 2005Google Scholar
3Ehre, D., Cohen, H., Lyahovitskaya, V., Tagantsev, A.K.Lubomirsky, I.: Structural transformations during formation of quasi-amorphous BaTiO3. Adv. Func. Mater. 17, 1204 2007CrossRefGoogle Scholar
4Ebralidze, I., Lyahovitskaya, V., Zon, I., Wachtel, E.Lubomirsky, I.: Anomalous pre-nucleation volume expansion of amorphous BaTiO3. J. Mater. Chem. 15(39), 4258 2005Google Scholar
5Lyahovitskaya, V., Feldman, Y., Zon, I., Wachtel, E., Gartsman, K., Tagantsev, A.K.Lubomirsky, I.: Formation and thermal stability of quasi-amorphous thin films. Phys. Rev. B 71(9), 094205 2005Google Scholar
6Ehre, D., Lyahovitskaya, V., Tagantsev, A.K.Lubomirsky, I.: Amorphous piezo- and pyro-electric phases of BaZrO3 and SrTiO3. Adv. Mater. 19(11), 1515 2007Google Scholar
7Chiou, B.S.Lin, M.C.: Electrical-properties of amorphous barium-titanate films prepared by low-power rf-sputtering. Thin Solid Films 248(2), 247 1994CrossRefGoogle Scholar
8Kawano, H., Morii, K.Nakayama, Y.: Effects of crystallization on structural and dielectric properties of thin amorphous films of (1−x)BaTiO3−x SrTiO3 (x = 0–0.5, 1.0). J. Appl. Phys. 73(10), 5141 1993CrossRefGoogle Scholar
9Nam-Yang, L., Sekine, T., Ito, Y.Uchino, K.: Deposition profile of RF-magnetron-sputtered BaTiO3 thin films. Jpn. J. Appl. Phys. L 33(3A), 1484 1994Google Scholar
10Rossnagel, S.M., Cuomo, J.J.Westwood, W.D.: Handbook of Plasma Processing Technology Noyes Publications William Andrew Publishing, LLC, Norwich, NY 1990Google Scholar
11Wohlecke, M., Marrello, V.Onton, A.: Refractive-index of BaTiO3 and SrTiO3 films. J. Appl. Phys. 48(4), 1748 1977CrossRefGoogle Scholar
12Jia, Q.X., Chang, L.H.Anderson, W.A.: Interactions between ferroelectric BaTiO3 and Si. J. Electron. Mater. 23(6), 551 1994Google Scholar
13Guenter, P.: New applications of ferroelectrics for optical-devices. Ferroelectrics 53(1–4), 157 1984CrossRefGoogle Scholar
14Inorganic Crystal Structure Database http://www.fiz-karlsruhe.de/fiz/products/icsd/icsd.html, ICSD Collection Code 6245.Google Scholar
15Liu, W.T., Lakshmikumar, S.T., Knorr, D.B., Rymaszewski, E.J., Lu, T.M.Bakhru, H.: Thermally stable amorphous BaxTi2−xOy thin films. Appl. Phys. Lett. 66(7), 809 1995Google Scholar
16Inorganic Crystal Structure Database http://www.fiz-karlsruhe.de/fiz/products/icsd/icsd.html, ICSD Collection Code 14299.Google Scholar
17Inorganic Crystal Structure Database http://www.fiz-karlsruhe.de/fiz/products/icsd/icsd.html, ICSD Collection Code 281548.Google Scholar
18He, J.Q., Jia, C.L., Vaithyanathan, V., Schlom, D.G., Schubert, J., Gerber, A., Kolhstedt, H.H.Wang, R.H.: Interfacial reaction in the growth of epitaxial SrTiO3 thin films on (001) Si substrates. J. Appl. Phys. 97(10), 104921, 2005Google Scholar
19Hubbard, K.J.Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11(11), 2757 1996CrossRefGoogle Scholar
20Zhang, H.Z., Finnegan, M.Banfield, J.F.: Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett. 1(2), 81 2001CrossRefGoogle Scholar