Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T20:08:36.794Z Has data issue: false hasContentIssue false

Influence of texture on the switching behavior of Pb(Zr0.70Ti0.30)O3 sol-gel derived thin films

Published online by Cambridge University Press:  31 January 2011

Keith G. Brooks
Affiliation:
Laboratoire de C’eramique, Ecole Polytechnic F’ed’erale de Lausanne, Lausanne, Switzerland
Radosveta D. Klissurska
Affiliation:
Laboratoire de C’eramique, Ecole Polytechnic F’ed’erale de Lausanne, Lausanne, Switzerland
Pedro Moeckli
Affiliation:
Laboratoire de C’eramique, Ecole Polytechnic F’ed’erale de Lausanne, Lausanne, Switzerland
N. Setter
Affiliation:
Laboratoire de C’eramique, Ecole Polytechnic F’ed’erale de Lausanne, Lausanne, Switzerland
Get access

Abstract

Rhombohedral Pb(Zr0.70Ti0.30)O3 thin films of four different well-defined textures, namely, (100), (111), bimodal (110)/(111), and (100)/(111), were prepared by a sol-gel method. The films were characterized in terms of grain size, presence of second phases, surface roughness, columnarity of grains, and other microstructural features. The dielectric, ferroelectric, and fatigue properties were investigated, with emphasis on the hysteresis switching characteristics. Results are discussed from the reference point of the allowable spontaneous polarization directions available for the different textures. The values of coercive field, remanent and saturation polarization, and slope of the loop at the coercive field, at saturating fields can be qualitatively explained based on the texture, independent of microstructural differences. The occurrence of surface pyrochlore, however, is observed to affect the functionality of the saturation curves, particularly for the samples of bimodal texture. Shearing of the hysteresis curves of the bimodal films is also attributed to surface microstructural features. The occurrence of nonswitching 71° or 109° domains in the (111) and (110)/(111) textured films is hypothesized based on a comparison with the data from the (100) textured film. Corrected saturation polarization values agree with the spontaneous polarization values of rhombohedral PZT single crystals and published calculated values for rhombohedral PZT ceramics. The fatigue characteristics show increases in the switching component of polarization in the range 103−107 bipolar cycles, particularly for the (111) textured sample. Onset of fatigue is observed for all samples between 107 and 108 switching cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.de Araujo, C. A. Paz, McMillan, L. D., Melnick, B. M., Cuchiaro, J. D., and Scott, J. F., Ferroelectrics 104, 241256 (1990).CrossRefGoogle Scholar
2.Shepherd, W. H., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 277288.Google Scholar
3.Jaffe, B., Cook, W., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
4.Watanabe, H., Mihara, T., and Paz de Araujo, C. A., Proc. 3rd Int. Symp. on Int. Ferroelectrics, Colorado Springs, CO (1991), pp. 139150.Google Scholar
5.Benedetto, J. M., Moore, R. A., and McLean, F. B., J. Appl. Phys. 75, 460466 (1994).CrossRefGoogle Scholar
6.Melnick, B. M., Paz de Araujo, C. A., McMillan, L. D., Carver, D. A., and Scott, J. F., Ferroelectrics 116, 7992 (1991).CrossRefGoogle Scholar
7.Zhu, W., Vest, R. W., Tse, M. S., Rao, M. K., and Liu, Z. Q., Journal of Materials Science: Materials in Electronics (Chapman and Hall, New York, 1994), Vol. 5, pp. 173179.Google Scholar
8.Chikarmane, V., Kim, J., Sudhama, C., Lee, J., Tasch, A., and Novak, S., J. Electron. Mater. 21, 503512 (1992).CrossRefGoogle Scholar
9.Chapin, L. N. and Myers, S. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 153158.Google Scholar
10.Myers, S. A. and Chapin, L. N., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 231236.Google Scholar
11.Tuttle, B. A., Schwartz, R. W., Doughty, D. H., and Voight, J. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 159165.Google Scholar
12.Kwok, C. K. and Desu, S. B., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1992), pp. 159165.Google Scholar
13.Reaney, I. M., Brooks, K., Klissurska, R., Pawlaczyk, C., and Setter, N., J. Am. Ceram. Soc. 77 (5), 12091216 (1994).CrossRefGoogle Scholar
14.Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 25402553 (1994).CrossRefGoogle Scholar
15.Bellur, K. R., Al-Shareef, H. N., Rou, S. H., Gifford, K. D., Auciello, O., and Kingon, A. I., Proc. ISAF'92, IEEE, 448–451 (1992).Google Scholar
16.Tuttle, B. A., Voigt, J. A., Garino, T. J., Goodnow, D. C., Schwartz, R. W., Lamppa, D. L., Headley, T. J., and Eatough, M. O., Proc. 8th Int. Symp. Appl. Ferroelectrics, Greenville, SC, Aug. 31–Sept. 2, 1992, pp. 344348.Google Scholar
17.Tuttle, B. A., Garino, T. J., Voigt, J. A., Headley, T. J., Dimos, D., and Eatough, M. O., in Science and Technology of Ferroelectric Thin Films (Kluwer Academic Publishers, The Netherlands, 1995), pp. 117132.Google Scholar
18.Larsen, P. K., Kampschöer, G. L. M., van der Mark, M. B., and Klee, M., Proc. 8th Int. Symp. Appl. Ferroelectrics, Greenville, SC, Aug. 31–Sept. 2, 1992.Google Scholar
19.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107121 (1985).Google Scholar
20.Brooks, K. G., in Growth and Applications of Thin Films, edited by Eckertova, L. and Ruzicka, T., Proc. Int. Summer School, June 20–25, 1994, Chlum u Trebone, Czech Republic (Prometheus Publishing, Prague, 1994).Google Scholar
21.Harris, G. B., Philos. Mag. 43, 113 (1952).CrossRefGoogle Scholar
22.Barrett, C. S., Structure of Metals (McGraw-Hill, New York, 1953), pp. 203205.Google Scholar
23.Chen, S. and Chen, I., IMF Proc., August (1993).Google Scholar
24.Tani, T., Xu, Z., and Payne, D. A., in Ferroelectric Thin Films III, edited by Myers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), pp. 269274.Google Scholar
25.Klee, M., De Veirman, A., Van de Weijer, P., Mackens, U., and Van Hal, H., Philips Res. Rep. 47, 263 (1993).Google Scholar
26.Spierings, G. A. C. M., van Zon, J. B. A., Klee, M., and Larsen, P. K., Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 9–11, 1992.Google Scholar
27.Kaushik, V., Maniar, P., Campbell, A., Jones, R., Moazzami, R., Mogab, C. J., Hance, R., and Pyle, R., in Ferroelectric Thin Films III, edited by Myers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), pp. 209214.Google Scholar
28.Lambeck, P. V. and Jonker, G. H., Ferroelectrics 22, 729731 (1978).CrossRefGoogle Scholar
29.Arlt, G., in Science and Technology of Ferroelectric Thin Films (Kluwer Academic Publishers, The Netherlands, 1995), pp. 261267.Google Scholar
30.Tagantsev, A. K., Landivar, M., Colla, E., Brooks, K. G., and Setter, N., in Science and Technology of Ferroelectric Thin Films (Kluwer Academic Publishers, The Netherlands, 1995), pp. 301314.Google Scholar