Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:59:23.640Z Has data issue: false hasContentIssue false

The influence of test frequency, temperature, and environment on the fatigue resistance of an Ni3Al–B/Cr/Zr intermetallic alloy

Published online by Cambridge University Press:  31 January 2011

G.M. Camus
Affiliation:
Laboratoire des Composites Thermostructuraux, U.M.R. 47 CNRS/SEP/UBI, 3 Avenue Leonard de Vinci, 33600 Pessac, France
D.J. Duquette
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
N.S. Stoloff
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Get access

Abstract

Stress-controlled fatigue tests have been carried out on an Ni3Al–B/Cr/Zr alloy, at 600 °C and 800 °C in air and in vacuum at various test frequencies. Decreasing the test frequency and/or increasing the temperature leads to a decrease in the number of cycles to failure and a gradual disappearance of a fatigue fracture zone. This trend is shown to be related to a true creep component. Environment has a weak interacting effect on fatigue life but strongly influences the fracture path in the fatigue zones, with fracture becoming partly or entirely intergranular when the environment is changed from vacuum to air. It is suggested that most of the fatigue life is spent in initiating a crack. Comparisons are made with some creep data in terms of fracture paths and time to rupture. Fatigue life at 800 °C is shown to be entirely controlled by creep damage at the lowest test frequency of 0.2 Hz.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 11901196 (1979).Google Scholar
2.Stoloff, N. S., Int. Mater. Rev. 34, 157183 (1989).Google Scholar
3.Baker, I., Schulson, E. M., and Horton, J. A., Acta Metall. 35, 15331541 (1987).CrossRefGoogle Scholar
4.Sikka, V. K., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 487493.Google Scholar
5.Liu, C. T. and White, C. L., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), pp. 365380.Google Scholar
6.Fuchs, G. E. and Stoloff, N. S., Scripta Metall. 21, 863868 (1987).CrossRefGoogle Scholar
7.Kuruvilla, A. K. and Stoloff, N. S., Scripta Metall. 21, 873877 (1987).CrossRefGoogle Scholar
8.Schneibel, J. H., Petersen, G. F., and Liu, C. T., J. Mater. Res. 1, 6872 (1986).Google Scholar
9.Bellows, R. S. and Tien, J. K., Scripta Metall. 21, 16591662 (1987).CrossRefGoogle Scholar
10.Bellows, R. S., Schwarzkopf, E. A., and Tien, J. K., Metall. Trans. A 19A, 479486 (1988).Google Scholar
11.Liu, C. T. and White, C. L., Acta Metall. 35, 643649 (1987).CrossRefGoogle Scholar
12.Chang, K. M., Huang, S. C., and Taub, A. I., High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 303308.Google Scholar
13.Liu, C. T. and Sikka, V., J. Metals 38 (5), 1921 (1986).Google Scholar
14.Sikka, V. K. and Loria, E. A., in Superalloys 1988, edited by Duhl, D. N., Maurer, G., Antolovich, S., Lund, C., and Reichman, S. (AIME, Warrendale, PA, 1988), pp. 203212.Google Scholar
15.Hou, S. E., Hou, N. S., Tong, C. H., Ma, C. Y., and Lee, S. Y., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 507512.Google Scholar
16.Matuszyk, W., Thesis, M. S., Rensselaer Polytechnic Institute, Troy, NY, 1988.Google Scholar
17.Stoloff, N. S. and Duquette, D. J., in Creep-Fatigue-Environment Interactions, edited by Pelloux, R. M. and Stoloff, N. S. (TMSAIME, Warrendale, PA, 1980), pp. 178194.Google Scholar
18.Povirk, G. L., Horton, J. A., McKamey, C. G., Tiegs, T. N., and Nutt, S. R., J. Mater. Sci. 23 (11), 39453950 (1988).Google Scholar
19.Blank, E. and Stoloff, N. S., Acta Metall. 35, 22552264 (1987).CrossRefGoogle Scholar
20.Stoloff, N. S., in Fatigue Environment and Temperature Effects, Sagamore Army Conf. Proc. 27, edited by Burke, J. J. and Weiss, V. (Plenum Press, New York, 1983), pp. 301327.CrossRefGoogle Scholar