Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T04:34:57.120Z Has data issue: false hasContentIssue false

Influence of sulfur incorporation on field-emission properties of microcrystalline diamond thin films

Published online by Cambridge University Press:  31 January 2011

S. Gupta*
Affiliation:
Engineering Department, University of Cambridge, Trumpington Street, CB2 1PZ, United Kingdom
B.R. Weiner
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, PO Box 23346, PR00931, Puerto Rico
G. Morell
Affiliation:
Department of Physical Sciences, University of Puerto Rico, San Juan, PO Box 23323, PR00931, Puerto Rico
*
a)Address all correspondence to this author. e-mail: (strictly for correspondence) [email protected]
Get access

Abstract

Results are reported on the electron field emission properties of microcrystalline diamond thin films grown on molybdenum substrates by the sulfur (S)-assisted hot-filament chemical vapor deposition technique using methane (CH4), hydrogen sulfide (H2S), and hydrogen (H2) gas mixtures. Electron field-emission measurements revealed that the S-incorporated microcrystalline diamond thin films have substantially lower turn-on fields and steep rising currents as compared to those grown without sulfur. The field-emission properties for the S-incorporated films were also investigated systematically as a function of substrate temperature (TS). Lowest turn-on field achieved was observed at around 12.5 V/μm for the samples grown at TS of 700°C with 500 ppm H2S. To establish the property-structure correlation, we analyzed the films with multiple characterizations include scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy (RS), and x-ray photoelectron spectroscopy (XPS) techniques. It was found that sulfur addition causes significant microstructural changes in microcrystalline diamond thin films. S-assisted films show smoother, coarse-grained surfaces (non-faceted) than those grown without it (well-faceted) and a relatively higher content of non-diamond carbon (primarily sp2-bonded C). RS and investigations on the morphology by SEM and AFM indicated the increase of sp2 C content with increasing TS followed by a morphological transition at 700°C in the films. XPS investigations also showed the incorporation of S in the films up to a few atomic layers. It is believed that the electron-emission properties are governed by the sulfur incorporation during the chemical vapor deposition process. Although most of the S is expected to be electrically inactive, under the high doping conditions hereby used, it is shown rather indirectly through multiple characterizations that there may be some amount of S in donor states. Therefore the results are discussed in terms of the dual role of S whereby it induces the structural defects in the form of enhanced sp2 C content at the expense of diamond quality and a possibility of availability of conduction electrons. In fact the latter finding is supported through room temperature electrical conductivity measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Castellano, J.A., Handbook of Display Technology (Academic, New York, 1992); J.E. Jaskie, Mater. Res. Bull. 21, 59 (1996); M.P. Silverman, Il Nuovo Cimento 97 B, 200 (1987).Google Scholar
2.Yoder, M.N., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K.E. and Dismukes, J.P. (John Wiley and Sons, New York, 1994).Google Scholar
3.Field, J.E., in The Properties of Diamonds (Academic, London, U.K., 1979).Google Scholar
4.Gupta, S., Katiyar, R.S., Gilbert, D.R., Singh, R.K., and Morell, G., J. Appl. Phys. 88, 5695 (2000).CrossRefGoogle Scholar
5.Ulczynski, M.J., Reinhard, D.K., Prytajko, M., and Amusen, J., in Advances in New Diamond Science and Technology, Proceedings of the 4th International Conference on New Diamond Science and Technology, Kobe, Japan, 1994, edited by Kaito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yihikawa, M. (MYU, Tokyo, Japan, 1994), p. 41.Google Scholar
6.Huang, T.H., Kuo, C.T., Lin, T.S., and Chang, C.S., in Diamond and Related Materials, edited by Bachmann, P.K., Collins, A.T., and Seal, M. (Elsevier, Lausanne, Switzerland, 1993), Vol. 2, p. 928.Google Scholar
7.Wang, C., Garcia, A., Ingram, D.C., Lake, M., and Kordesch, M.E., Electron. Lett. 27, 1459 (1991).CrossRefGoogle Scholar
8.Zhirnov, V.V. and Hren, J.J., MRS Bull. 23 (9), 42 (1998).CrossRefGoogle Scholar
9.Brodie, I. and Spindt, C.A., Adv. Electron. Electron. Phys. 83, 1106 (1992).Google Scholar
10.Gröning, O., Nilsson, L-O., Gröning, P., and Schlapbach, L., Solid-State Electron. 45, 929 (2001); O.M. Küttel, O. Gröning, C. Emmennegger, L. Nilsson, E. Maillard, L. Diederich, and L. Schlapbach, Carbon 37, 745 (1999).CrossRefGoogle Scholar
11.Robertson, J., in Materials Issues in Vacuum Microelectronics, edited by Zhu, W., Pan, L.S., Felter, T.E., and Holland, C. (Mater. Res. Soc. Symp. Proc. 509, Warrendale, PA, 1998), p. 83.Google Scholar
12.Forbes, R.G., Solid-State Electron. 45, 779 (2001).CrossRefGoogle Scholar
13.Zhu, W., Bower, C., Kochanski, G.P., and Jin, S., Solid-State Electron. 45, 921 (2001).CrossRefGoogle Scholar
14.Himpsel, F.J., Knapp, J.A., J.A. van Vechten, and Eastman, D.E., Phys. Rev. B 20, 624 (1979).CrossRefGoogle Scholar
15.J. Van der Weide and Nemanich, R.J., Appl. Phys. Lett. 62, 1878 (1993).Google Scholar
16.Alivisatos, P.A., Science 271, 933 (1996).CrossRefGoogle Scholar
17.Angus, J.C., Koidl, P., Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC Press, Boca Raton, FL, 1986), p. 89.Google Scholar
18.Yoder, M.N., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K.E. and Dismukes, J.P. (John Wiley and Sons, New York, 1994), p. 4.Google Scholar
19.Lifshitz, Y., Diamond Relat. Mater. 8, 1659 (1999).CrossRefGoogle Scholar
20.Okano, K., Koizumi, S., Ravi, S.Silva, P., and Amaratunga, G.A.J., Nature 381, 140 (1996).CrossRefGoogle Scholar
21.Gupta, S., Weiner, B.R., and Morell, G., Diamond Relat. Mater. 11, 799 (2002).CrossRefGoogle Scholar
22.Park, M., Sowers, A.T., Rinne, C.L., Schlesser, R., Bergman, L., Nemanich, R., Zhirnov, V.V., and Choi, W.B., J. Vac. Sci. Technol. B 17, 734 (1999), and references therein.CrossRefGoogle Scholar
23.Kimura, C., Koizumi, S., Kamo, M., and Sugino, T., J. Vac. Sci. Technol. B 18, 1024 (2000).CrossRefGoogle Scholar
24.Köck, F.A.M., Garguilo, J.M., Brown, B., and Nemanich, R.J., Diam. Relat. Mater. 11, 774 (2002).Google Scholar
25.Sakaguchi, I., Gamo, M.N., Kikuchi, Y., Yasu, E., Haneda, H., Suzuki, T., and Ando, T., Phys. Rev. B 60, R2139 (1999); R. Kalish, A. Reznik, C. Uzan-Saguy, and C. Cytermann, Appl. Phys. Lett. 76, 757 (2000).Google Scholar
26.Saada, D., Adler, J., and Kalish, R., Appl. Phys. Lett. 77, 878 (2000); T. Miyazaki and H. Okushi, Diamond Relat. Mater. 10, 449 (2001).Google Scholar
27.Gröning, O., Küttel, O.M., Schallar, E., Gröning, P., and Schlapbach, L., Appl. Phys. Lett. 69, 476 (1996).Google Scholar
28.Xu, N.S., in High Voltage Vacuum Insulation, edited by Latham, R.V. (Academic, New York, 1995), Chapter 4.Google Scholar
29.Zhirnov, V.V., Choi, W.B., Cuomo, J.J., and Hren, J.J., Appl. Surf. Sci. 94/95, 123 (1996).CrossRefGoogle Scholar
30.Xu, N.S., Tzeng, Y., and Latham, R.V., J. Phys. D 26, 1776 (1993).CrossRefGoogle Scholar
31.Shovlin, J.D. and Kordesch, M.E., Appl. Phys. Lett. 65, 863 (1994).Google Scholar
32.Zhu, W., Kochanski, G.P., Jin, S., Seibles, L., Jacobson, D.C., McCormack, M., and White, A.E., Appl. Phys. Lett. 67, 1157 (1995); W. Zhu, G.P. Kochanski, S. Jin, and L. Seibles, J. Vac. Sci. Technol. B 14, 2011 (1996); W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. 75, 873 (1999); N.M. Miskovsky, P.H. Cutler, and Z-H. Huang, J. Vac. Sci. Technol. B 14, 2037 (1996).CrossRefGoogle Scholar
33.Sternsculte, H., Schreck, M., and Stritzker, B., Diam. and Related Materials 12, 318 (2003).CrossRefGoogle Scholar
34.Gheeraert, E., Casanova, N., Tajani, A., Deneuville, A., Bustarret, E., Garrido, J.A., Nebel, C.E., and Stutzmann, M., Diamond Relat. Mater. 11, 289 (2001); H. Sternschulte, M. Schreck, and B. Stritzker, Diamond Relat. Mater. 11, 296 (2001); J.R. Petherbridge, P.W. May, G. Fuge, K.N. Rosser, and M.N. R. Ashfold, Diamond Relat. Mater. 11, 301 (2001).Google Scholar
35.Gupta, S., Weiner, B.R., and Morell, G., J. Mater. Res. 18, 363 (2002).Google Scholar
36.Haynes, W. and Loudon, R., in Scattering of Light by Crystals (Wiley Interscience, New York, 1978).Google Scholar
37.Gröning, O., Küttel, O.M., Gröning, P., and Schlapbach, L., J. Vac. Sci. Technol. B 17, 1970 (1999).Google Scholar
38.Prawer, S., Nugent, K.W., Jamieson, D.N., Orwa, J.O., Bursill, L.A., and Peng, J.L., Chem. Phys. Lett. 332, 93 (2000).Google Scholar
39.Nemanich, R.J., Glass, J.T., Luckovsky, G., and Shröder, R.E., J. Vac. Sci. Technol. A 6, 1783 (1988), and references therein.CrossRefGoogle Scholar
40.Gupta, S., Weiss, B.L., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 80, 1471 (2002).Google Scholar
41.Bergman, L. and Nemanich, R.J., J. Appl. Phys. 78, 6709 (1995); S. Gupta, R.S. Katiyar, D.R. Gilbert, R.K. Singh, and G. Morell, J. Appl. Phys. 88, 5695 (2000).CrossRefGoogle Scholar
42.Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corp., Chanhassen, MN, 1992).Google Scholar
43.Castner, D.G., Hinds, K., and Grainger, D.W., Langmuir 12, 5083 (1996).Google Scholar
44.Köck, F.A.M., Garguilo, J.M., Nemanich, R.J., Gupta, S., Weiner, B.R., and Morell, G., Diamond Relat. Mater. 12, 474 (2003).Google Scholar
45.Gupta, S., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 83, 491 (2003).CrossRefGoogle Scholar
46.Cleri, F., Keblinski, P., Colombo, L., Wolf, D., and Phillpot, S.R., Europhys. Lett. 46, 671 (1999).Google Scholar