Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T11:27:55.840Z Has data issue: false hasContentIssue false

Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC

Published online by Cambridge University Press:  03 March 2011

J. Gubicza
Affiliation:
Department of Materials Physics, Eötvös Loránd University, H-1518 Budapest, Hungary
S. Nauyoks
Affiliation:
Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129
L. Balogh
Affiliation:
Department of Materials Physics, Eötvös Loránd University, H-1518 Budapest, Hungary
J. Labar
Affiliation:
Department of Materials Physics, Eötvös Loránd University, H-1518 Budapest, Hungary; and Research Institute for Technical Physics and Materials Science, H-1525 Budapest, Hungary
T.W. Zerda*
Affiliation:
Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129
T. Ungár
Affiliation:
Department of Materials Physics, Eötvös Loránd University, H-1518 Budapest, Hungary
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microstructure of sintered nanocrystalline SiC is studied by x-ray line profile analysis and transmission electron microscopy. The lattice defect structure and the crystallite size are determined as a function of pressure between 2 and 5.5 GPa for different sintering temperatures in the range from 1400 to 1800 °C. At a constant sintering temperature, the increase of pressure promotes crystallite growth. At 1800 °C when the pressure reaches 8 GPa, the increase of the crystallite size is impeded. The grain growth during sintering is accompanied by a decrease in the population of planar faults and an increase in the density of dislocations. A critical crystallite size above which dislocations are more abundant than planar defects is suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Huang, Z.H., Jia, D.C., Zhou, Y., and Wang, Y.J.: Effect of a new additive on mechanical properties of hot-pressed silicon carbide ceramics. Mater. Res. Bull. 37, 933 (2002).CrossRefGoogle Scholar
2Zhao, Y., Qian, J., Daemen, L., Pantea, C., Zhang, J., Voronin, G., and Zerda, T.W.: Enhancement of fracture toughness in nanostructured diamond–SiC composites. Appl. Phys. Lett. 84, 1356 (2004).CrossRefGoogle Scholar
3Szlufarska, I., Nakano, A., and Vashishta, P.: A crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911 (2005).CrossRefGoogle ScholarPubMed
4Ohyanagi, M., Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., and Munir, Z.: Consolidation of nanostructured SiC with disorder-order transformation. Scripta Mater. 50, 111 (2004).CrossRefGoogle Scholar
5Krell, A.: Handbook of Ceramic Hard Materials, edited by Riedel, R. (Wiley-VCH, Weinheim, Germany, 2000), p. 183.CrossRefGoogle Scholar
6Koumoto, K., Takeda, S., Pai, C.H., Sato, T., and Yanagida, H.: High-resolution electron microscopy observations of stacking faults in β-SiC. J. Am. Ceram. Soc. 72, 1985 (1989).CrossRefGoogle Scholar
7Hao, Y-J., Jin, G-Q., Han, X-D., and Guo, X-Y.: Synthesis and characterization of bamboo-like SiC nanofibers. Mater. Lett. 60, 1334 (2006).CrossRefGoogle Scholar
8Tateyama, H., Sutoh, N., and Murukawa, N.: Quantitative analysis of stacking faults in the structure of SiC by x-ray powder profile refinement method. J. Ceram. Soc. Jpn. 96, 1003 (1988).CrossRefGoogle Scholar
9Ribárik, G., Gubicza, J., and Ungár, T.: Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387–389, 343 (2004).CrossRefGoogle Scholar
10Balogh, L., Ribárik, G., and Ungár, T.: Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. J. Appl. Phys. 100, 023512 (2006).CrossRefGoogle Scholar
11Voronin, G.A., Zerda, T.W., Gubicza, J., Ungar, T., and Dub, S.N.: Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique. J. Mater. Res. 19, 2703 (2004).CrossRefGoogle Scholar
12Treacy, M.M.J., Newsam, J.M., and Deem, M.W.: A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. London A 433, 499 (1991).Google Scholar
13Ungár, T. and Tichy, G.: The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status Solidi A 147, 425 (1999).3.0.CO;2-W>CrossRefGoogle Scholar
14Chatterjee, A., Kalia, R.K., Nakano, A., Omeltchenko, A., Tsuruta, K., Vashishta, P., Loong, C.K., Winterer, M., and Klein, S.: Sintering, structure, and mechanical properties of nanophase SiC: A molecular dynamics and neutron scattering study. Appl. Phys. Lett. 77, 1132 (2000).CrossRefGoogle Scholar
15Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H.: Continuous thermodynamic-equilibrium glass transition in high-energy grain boundaries. Philos. Mag. Lett. 76, 143 (1997).CrossRefGoogle Scholar
16Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Ohyanagi, M., and Munir, Z.A.: Consolidation of nanostructured β-SiC by spark plasma sintering. J. Am. Ceram. Soc. 87, 1436 (2004).CrossRefGoogle Scholar
17Liao, F., Girshick, S.L., Mook, W.M., Gerberich, W.W., and Zachariah, M.R.: Superhard nanocrystalline silicon carbide films, Appl. Phys. Lett. 86, 171913 (2005).CrossRefGoogle Scholar
18Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungár, T., Wang, Y.M., Ma, E., and Valiev, R.Z.: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908 (2003).CrossRefGoogle Scholar
19Ungár, T., Tichy, G., Gubicza, J., and Hellmig, R.J.: Correlation between subgrains and coherently-scattering-domains. J. Powder Diffraction 20, 366 (2005).CrossRefGoogle Scholar
20Zhu, Y.T., Liao, X.Z., Srinivasan, S.G., and Lavernia, E.J.: Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys. 98, 034319 (2005).CrossRefGoogle Scholar