Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T00:33:06.377Z Has data issue: false hasContentIssue false

Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy

Published online by Cambridge University Press:  05 June 2020

Lavanya Raman*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai600036, India
G. Karthick
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai600036, India
K. Guruvidyathri
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai600036, India
Daniel Fabijanic
Affiliation:
Institute for Frontier Materials, Deakin University, Geelong, VIC3220, Australia
S. V. S. Narayana Murty
Affiliation:
Materials and Metallurgy Group, Vikram Sarabhai Space Center, Trivandrum695022, India
B. S. Murty*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai600036, India
Ravi S. Kottada*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai600036, India
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.

Type
Novel Synthesis and Processing of Metals
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J.P.: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33, 3092 (2018).CrossRefGoogle Scholar
Praveen, S. and Kim, H.S.: High-entropy alloys: Potential candidates for high-temperature applications – An overview. Adv. Eng. Mater. 20, 1 (2018).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
Vaidya, M., Muralikrishna, G.M., and Murty, B.S.: High-entropy alloys by mechanical alloying: A review. J. Mater. Res. 34, 664 (2019).CrossRefGoogle Scholar
Gao, M.C., Liaw, P.K., Yeh, J.W., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer International Publishing, Cham, 2016).CrossRefGoogle Scholar
Uporov, S., Bykov, V., Pryanichnikov, S., Shubin, A., and Uporova, N.: Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics 83, 1 (2017).CrossRefGoogle Scholar
Syed Ghazi, S. and Ravi, K.R.: Phase-evolution in high entropy alloys: Role of synthesis route. Intermetallics 73, 40 (2016).CrossRefGoogle Scholar
Suryanarayana, C. and Froes, F.H.: Mechanical alloying of titanium-base alloys. Adv. Mater. 5, 96 (1993).CrossRefGoogle Scholar
John, R., Karati, A., Garlapati, M.M., Vaidya, M., Bhattacharya, R., Fabijanic, D., and Murty, B.S.: Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy. J. Mater. Sci. 54, 14588 (2019).Google Scholar
Xie, Y., Cheng, H., Tang, Q., Chen, W., Chen, W., and Dai, P.: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).CrossRefGoogle Scholar
Kang, B., Lee, J., Ryu, H.J., and Hong, S.H.: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng. A 712, 616 (2018).CrossRefGoogle Scholar
Pan, J., Dai, T., Lu, T., Ni, X., Dai, J., and Li, M.: Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 738, 362 (2018).CrossRefGoogle Scholar
Xin, S.W., Zhang, M., Yang, T.T., Zhao, Y.Y., Sun, B.R., and Shen, T.D.: Ultra hard bulk nanocrystalline VNbMoTaW high-entropy alloy. J. Alloys Compd. 769, 597 (2018).Google Scholar
Wang, G., Liu, Q., Yang, J., Li, X., Sui, X., Gu, Y., and Liu, Y.: Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying. Int. J. Refract. Met. Hard Mater. 84, 104988 (2019).CrossRefGoogle Scholar
Smeltzer, J.A., Marvel, C.J., Hornbuckle, B.C., Roberts, A.J., Marsico, J.M., Giri, A.K., Darling, K.A., Rickman, J.M., Chan, H.M., and Harmer, M.P.: Achieving ultra hard refractory multi-principal element alloys via mechanical alloying. Mater. Sci. Eng. A 763, 138140 (2019).Google Scholar
Soni, V., Gwalani, B., Senkov, O.N., Viswanathan, B., Alam, T., Miracle, D.B., and Banerjee, R.: Phase stability as a function of temperature in a refractory high-entropy alloy. J. Mater. Res. 33, 3235 (2018).CrossRefGoogle Scholar
Raman, L., Guruvidyathri, K., Kumari, G., Narayana Murty, S.V.S., Kottada, R.S., and Murty, B.S.: Phase evolution of refractory high-entropy alloy CrMoNbTiW during mechanical alloying and spark plasma sintering. J. Mater. Res. 34, 756 (2019).CrossRefGoogle Scholar
Lv, S., Zu, Y., Chen, G., Fu, X., and Zhou, W.: An ultra-high strength CrMoNbWTi-C high entropy alloy co-strengthened by dispersed refractory IM and UHTC phases. J. Alloys Compd. 788, 1256 (2019).CrossRefGoogle Scholar
Praveen, S., Anupam, A., Tilak, R., and Kottada, R.S.: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).CrossRefGoogle Scholar
Sathiyamoorthi, P., Basu, J., Kashyap, S., Pradeep, K.G., and Kottada, R.S.: Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des. 134, 426 (2017).CrossRefGoogle Scholar
Praveen, S., Basu, J., Kashyap, S., and Kottada, R. S.: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361 (2016).CrossRefGoogle Scholar
Conrad, H.: Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 26, 123 (1981).CrossRefGoogle Scholar
Sun, W., Huang, X., and Luo, A.A.: Phase formations in low density high entropy alloys. Calphad Comput. Coupling Phase Diagrams Thermochem. 56, 19 (2017).CrossRefGoogle Scholar
Raghavan, R., Hari Kumar, K.C., and Murty, B.S.: Analysis of phase formation in multi-component alloys. J. Alloys Compd. 544, 152 (2012).CrossRefGoogle Scholar
Jacob, A., Schmetterer, C., Grüner, D., Wessel, E., Hallstedt, B., and Singheiser, L.: The Cr-Fe-Nb ternary system: Experimental isothermal sections at 700 °C, 1050 °C and 1350 °C. J. Alloys Compd. 648, 168 (2015).CrossRefGoogle Scholar
Zhu, J.H., Liaw, P.K., and Liu, C.T.: Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Mater. Sci. Eng. A 240, 260 (1997).CrossRefGoogle Scholar
Zhu, J.H., Liu, C.T., and Liaw, P.K.: Phase stability and mechanical behavior of NbCr2-based Laves phases. Intermetallics 7, 1011 (1999).CrossRefGoogle Scholar
Vahlas, C., Drouin Ladouce, B., Chevalier, P.-Y., Bernard, C., and Vandenbulcke, L.: A thermodynamic evaluation of the Ti-N system. Thermochim. Acta 180, 23 (1991).CrossRefGoogle Scholar
Hume-Rothery, W.: Atomic diameters, atomic volumes, and solid solubility relations in alloys. Acta Metall. 14, 17 (1966).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Yurchenko, N., Stepanov, N., and Salishchev, G.: Laves-phase formation criterion for high-entropy alloys. Mater. Sci. Technol. 33, 17 (2016).CrossRefGoogle Scholar
Poletti, M.G. and Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).CrossRefGoogle Scholar
Tsai, M., Chang, K., Li, J., and Tsai, R.: A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4, 90 (2016).Google Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Long, Y., Liang, X., Su, K., Peng, H., and Li, X.: A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties. J. Alloys Compd. 780, 607 (2019).CrossRefGoogle Scholar
Praveen, S., Anupam, A., Sirasani, T., Murty, B.S., and Kottada, R.S.: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Indian Inst Met. 66, 369 (2013).CrossRefGoogle Scholar
Liu, B., Wang, J., Chen, J., Fang, Q., and Liu, Y.: Ultra-high strength TiC/Refractory high-entropy-alloy composite prepared by powder metallurgy. JOM 69, 651 (2017).CrossRefGoogle Scholar
Yan, J., Li, K., and Wang, Y.I.: Microstructure and mechanical properties of WMoNbCrTi HEAs sintered from the powders milled for different durations. JOM 71, 2489 (2019).CrossRefGoogle Scholar
Huber, D.E.: Structure and properties of titanium tantalum alloys for biocompatibility. Ph.D. thesis, The Ohio State University, Columbus, Ohio, 2016.Google Scholar
Zhang, L., Zhang, H., Ren, X., Eckert, J., Wang, Y., Zhu, Z., Gemming, T., and Pauly, S.: Amorphous martensite in β-Ti alloys. Nat. Commun. 9, 506 (2018).CrossRefGoogle ScholarPubMed
Yuelan Zhang, Z.J. and Liu, H.: Thermodynamic assessment of the Nb-Ti System. Calphad 25, 305 (2001).CrossRefGoogle Scholar
Cordero, Z.C. and Schuh, C.A.: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).CrossRefGoogle Scholar
Guo, W., Martelli, S., Padella, F., Magini, M., Burgio, N., Paradiso, E., and Franzoni, U.: F.C.C. metastable phase induced in the Ti-Al system by mechanical alloying of pure elemental powders. Mater. Sci. Forum 88–90, 139 (1992).CrossRefGoogle Scholar
Gaskell, D.R.: Introduction to the Thermodynamics of Solids, Fourth (Taylor & Francis, Great Britain, 2009).Google Scholar
Guruvidyathri, K., Kumar, K.C.H., and Yeh, J.W.: Topologically close-packed phase formation in high entropy alloys: A review of Calphad and experimental results. JOM 69, 2113 (2017).CrossRefGoogle Scholar
Cao, S. and Zhao, J.C.: Determination of the Fe-Cr-Mo phase diagram at intermediate temperatures using dual-anneal diffusion multiples. J. Phase Equilib. Diff. 37, 25 (2016).CrossRefGoogle Scholar
Seo, S.G., Park, C.H., Kim, H.Y., Nam, W.H., Jeong, M., Choi, Y.N., Lim, Y.S., Seo, W.S., Kim, S.J., Lee, J.Y., and Cho, Y.S.: Preparation and visible-light photocatalysis of hollow rock-salt TiO1−xNx nanoparticles. J. Mater. Chem. A 1, 3639 (2013).CrossRefGoogle Scholar
Pierson, H.O.: Handbook of refractory carbides and nitrides: Properties, characteristics, processing, and applications. Handb. Refract. Carbides Nitrides 362, 287 (1996).Google Scholar
LeClaire, A.D.: Diffusion in Solid Metals and Alloys (Springer-Verlag, Berlin/Heidelberg, 1990); pp. 471472.CrossRefGoogle Scholar
Cancarevic, M., Zinkevich, M., and Aldinger, F.: Thermodynamic description of the Ti-O system using the associate model for the liquid phase. Calphad Comput. Coupling Phase Diagrams Thermochem. 31, 330 (2007).CrossRefGoogle Scholar
Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).CrossRefGoogle Scholar
Atkinson, A.: Grain-boundary diffusion: An historical perspective. J. Chem. Soc., Faraday Trans. 86, 1307 (1990).CrossRefGoogle Scholar
Mehrer, H.: Diffusion in Solid Metals and Alloys (Springer-Verlag, Berlin/Heidelberg, 1990).CrossRefGoogle Scholar
Bahena, J.A., Sebastian Riano, J., Chellali, M.R., Boll, T., and Hodge, A.M.: Thermally activated microstructural evolution of sputtered nanostructured Mo–Au. Materialia 4, 157 (2018).CrossRefGoogle Scholar
Wang, Y. and Aktaa, J.: Microstructural evolution, textural evolution and thermal stabilities of W and W–1 wt% La2O3 subjected to high-pressure torsion. Materialia 2, 46 (2018).CrossRefGoogle Scholar
Koch, C.C., Scattergood, R.O., Saber, M., and Kotan, H.: High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res. 28(13), 1785 (2013).CrossRefGoogle Scholar
Saunders, N. and Miodownik, A.P.: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier Science Inc, New York, USA, 1998).Google Scholar
Sundman, B., Jansson, B., and Andersson, J.O.: The Thermo-Calc databank system. Calphad 9, 153 (1985).CrossRefGoogle Scholar
Guruvidyathri, K., Murty, B.S., Yeh, J.W., and Hari Kumar, K.C.: Gibbs energy-composition plots as a tool for high-entropy alloy design. J. Alloys Compd. 768, 358 (2018).CrossRefGoogle Scholar
Supplementary material: File

Raman et al. supplementary material

Raman et al. supplementary material

Download Raman et al. supplementary material(File)
File 7.6 MB