Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T18:57:30.387Z Has data issue: false hasContentIssue false

The influence of in situ formed precipitates on the plasticity of Fe–Nb–B–Cu bulk metallic glasses

Published online by Cambridge University Press:  01 August 2011

Jin Man Park
Affiliation:
Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany; and Department of Metallurgical Engineering, Center for Non-Crystalline Materials, Yonsei University, Seoul 120-749, Republic of Korea
Do Hyang Kim*
Affiliation:
Department of Metallurgical Engineering, Center for Non-Crystalline Materials, Yonsei University, Seoul 120-749, Republic of Korea
Mihai Stoica
Affiliation:
Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany
Norbert Mattern
Affiliation:
Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany
Ran Li
Affiliation:
Department of Materials Science and Engineering, Beihang University, 100191 Beijing, China
Jürgen Eckert
Affiliation:
Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany; and Institute of Materials Science, Dresden University of Technology, D-01062 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Improved room temperature plasticity was achieved by microalloying Cu in a series of (Fe71Nb6B23)100−xCux (x = 0, 0.25, 0.5, 0.75, and 1) glass matrix alloys with tunable size and volume fraction of precipitates composed of α-Fe and Fe23B6 phases. When ∼10-nm-sized nano-scale precipitates are formed with a size comparable to the shear bandwidth by controlling the added content of Cu, the (Fe71Nb6B23)99.5Cu0.5 alloy exhibits a maximum plastic strain of 4.3 ± 0.8% with pronounced multiple shear banding. A further increase in the size of the precipitates up to micrometer scale results in catastrophic fracture accompanied with irregular cracks, revealing that the fracture mechanism of the different alloys is controlled by the precipitate size.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
2.Johnson, W.L.: Bulk glass-forming metallic alloys. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
3.Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).Google Scholar
4.Schuh, C.A. and Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003).CrossRefGoogle ScholarPubMed
5.Decker, R.F.: Alloy design using second phase. Metall. Trans. 4, 2495 (1973).Google Scholar
6.Cahn, R.W. and Haasen, P.: Physical Metallurgy (North-Holland, Amsterdam, 1996).Google Scholar
7.Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).Google Scholar
8.Lee, J.C., Kim, Y.C., Ahn, J.P., and Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).Google Scholar
9.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetrious, M.D., and Johnson, W.L.: Designing bulk metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).CrossRefGoogle ScholarPubMed
10.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).Google Scholar
11.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band formation and enhanced plasticity of bulk metallic glasses. Phys. Rev. Lett. 84, 2901 (2000).Google Scholar
12.Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
13.Park, J.M., Kim, D.H., Kim, K.B., Fleury, E., Lee, M.H., Kim, W.T., and Eckert, J.: Enhancement of plasticity in Ti-rich Ti-Zr-Be-Cu-Ni-Ta bulk glassy alloy via introducing the structural inhomogeneity. J. Mater. Res. 23, 2984 (2008).CrossRefGoogle Scholar
14.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
15.Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glass. Nat. Mater. 5, 15 (2006).CrossRefGoogle Scholar
16.Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L., and Ma, E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).CrossRefGoogle ScholarPubMed
17.Pekarskaya, E., Kim, C.P., and Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001).CrossRefGoogle Scholar
18.Chen, Y.M., Ohkubo, T., Mukai, T., and Hono, K.: Structure of shear bands in Pd40Ni40P20 bulk metallic glass. J. Mater. Res. 24, 1 (2009).CrossRefGoogle Scholar
19.Shi, Y. and Falk, M.L.: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).CrossRefGoogle ScholarPubMed
20.Zhang, Y. and Greer, A.L.: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 (2006).Google Scholar
21.Matsumoto, R. and Miyazaki, N.: The critical length of shear bands in metallic glass. Scr. Mater. 59, 107 (2008).CrossRefGoogle Scholar
22.Park, J.M., Wang, G., Li, R., Mattern, N., Eckert, J., and Kim, D.H.: Enhancement of plastic deformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio. Appl. Phys. Lett. 96, 031905 (2010).CrossRefGoogle Scholar
23.Makino, A., Li, X., Yubuta, K., Chang, C., Kubota, T., and Inoue, A.: The effect of Cu on the plasticity of Fe-Si-B-P based bulk metallic glass. Scr. Mater. 60, 277 (2009).Google Scholar
24.Park, J.M., Kim, D.H., Kim, K.B., and Eckert, J.: Improving the plasticity of a high strength Fe-Si-Ti ultrafine composite by introduction of an immiscible element. Appl. Phys. Lett. 97, 251915 (2010).Google Scholar
25.Zhang, Z.F., He, G., Zhang, H., and Eckert, J.: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composite containing ductile dendrites. Scr. Mater. 52, 945 (2005).Google Scholar
26.Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).Google Scholar
27.Spaepen, F.: Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
28.Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).Google Scholar
29.Park, J.M., Park, J.S., Kim, J.-H., and Chang, H.J.: Mechanical behaviors of partially devitrified Ti-based bulk metallic glasses. J. Mater. Sci. 40, 4999 (2005).Google Scholar
30.Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K., and Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 (2003).Google Scholar
31.Chen, M.W., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
32.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).Google Scholar
33.Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, F.G., Greer, A.L., Inoue, A., Zhang, W., and Kvick, A.: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006).CrossRefGoogle Scholar
34.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).Google Scholar
35.Park, J.M., Jayaraj, J., Kim, D.H., Mattern, N., Wang, G., and Eckert, J.: Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance. Intermetallics 18, 1908 (2010).Google Scholar