Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:21:15.053Z Has data issue: false hasContentIssue false

Influence of annealing on structural relaxation, crystallization, and deformation behavior of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

Kwang Seok Lee*
Affiliation:
Institut für Festkörper und Werkstofforschung (IFW) Dresden, Institute for Complex Materials, D-01171 Dresden, Germany
Jürgen Eckert*
Affiliation:
Institut für Festkörper und Werkstofforschung (IFW) Dresden, Institute for Complex Materials, D-01171 Dresden, Germany
Hyun-Joon Jun
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
Young Won Chang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
b)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

The influence of annealing on the structural changes and the mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit-1) bulk metallic glass was systematically studied by varying the annealing times at 703 K. The evolution of the structural state at a relatively high temperature within the supercooled liquid region was studied by thermal analysis, x-ray diffraction, high-resolution transmission electron microscopy, extended x-ray absorption fine structure, and dilatometric measurements. The deformation behavior and the mechanical properties were also examined by carrying out hardness and compression tests for the specimens annealed for various times.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, E.S. Kim, D.H.: Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Met. Mater. Int. 11, 19 2005CrossRefGoogle Scholar
2Inoue, A., Zhang, W., Zhang, T. Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001CrossRefGoogle Scholar
3Schroers, J. Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
4Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H. Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 2006CrossRefGoogle Scholar
5Peker, A. Johnson, W.L.: A highly processable metallic glass— Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
6Zhang, Y., Zhao, D.Q., Wang, R.J. Wong, W.H.: Formation and properties of Zr48Nb8Cu14Ni12Be18 bulk metallic glass. Acta Mater. 51, 1971 2003CrossRefGoogle Scholar
7Bruck, H.A., Christman, T., Rosakis, A.J. Johnson, W.L.: Quasi-static constitutive behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 1994CrossRefGoogle Scholar
8Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H. Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
9Saotome, Y., Miwa, S., Zhang, T. Inoue, A.: The micro-formability of Zr-based amorphous alloys in the supercooled liquid state and their application to micro-dies. J. Mater. Proc. Technol. 113, 64 2001CrossRefGoogle Scholar
10Kawamura, Y., Shibata, T., Inoue, A. Masumoto, T.: Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Mater. 46, 253 1998CrossRefGoogle Scholar
11Lee, K.S. Chang, Y.W.: Extrusion formability and deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass in an undercooled liquid state after rapid heating. Mater. Sci. Eng., A 399, 238 2005CrossRefGoogle Scholar
12Zhang, H-W. Zhou, T.J.: Pressure effect on the crystallization behavior of Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk metallic glass. Phys. Lett. A 350, 297 2006CrossRefGoogle Scholar
13Zhang, T., Inoue, A., Matsushita, M. Saida, J.: Formation of icosahedral quasicrystal by crystallization of Zr70(Ni, Cu, Pd)30 amorphous alloys. J. Mater. Res. 16, 20 2001CrossRefGoogle Scholar
14Schroers, J., Busch, R., Bossuyt, S. Johnson, W.L.: Crystallization behavior of the bulk metallic glass forming Zr41Ti14Cu12Ni10Be23 liquid. Mater. Sci. Eng., A 304–306, 287 2001CrossRefGoogle Scholar
15Tam, R.C.Y. Shek, C.H.: Relaxation and crystallization of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk amorphous alloys. Mater. Sci. Eng., A 364, 198 2004CrossRefGoogle Scholar
16Martin, I., Ohkubo, T., Ohnuma, M., Deconihout, B. Hono, K.: Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 52, 4427 2004CrossRefGoogle Scholar
17Lee, K.S., Ha, T.K., Ahn, S. Chang, Y.W.: High temperature deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J. Non-Cryst. Solids 317, 193 2003CrossRefGoogle Scholar
18Allen, D.R., Foley, J.C. Perepezko, J.H.: Nanocrystal development during primary crystallization of amorphous alloys. Acta Mater. 46, 431 1998CrossRefGoogle Scholar
19Bletry, M., Guyot, P., Brechet, Y., Blandin, J.J. Soubeyroux, J.L.: Homogeneous deformation of bulk metallic glasses in the super-cooled liquid state. Mater. Sci. Eng., A 387–389, 1005 2004CrossRefGoogle Scholar
20Yang, H.W. Wang, J.Q.: Evidence of structure relaxation prior to nanocrystallization in an Al-based metallic glass. Scripta Mater. 55, 359 2006CrossRefGoogle Scholar
21Nagel, C., Rätzke, K., Schmidke, E., Wolff, J., Geyer, U. Faupel, F.: Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid. Phys. Rev. B 57, 10224 1998CrossRefGoogle Scholar
22Hajlaoui, K., Benameur, T., Vaughan, G. Yavari, A.R.: Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation. Scripta Mater. 51, 843 2004CrossRefGoogle Scholar
23Flores, K.M., Suh, D., Dauskardt, R.H., Asoka-Kumar, P., Sterne, P.A. Howell, R.H.: Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. J. Mater. Res. 17, 1153 2002CrossRefGoogle Scholar
24Deng, Y.F., He, L.L., Zhang, Q.S., Zhang, H.F. Ye, H.Q.: HRTEM analysis of nanocrystallization during uniaxial compression of a bulk metallic glass at room temperature. Ultramicroscopy 98, 201 2004CrossRefGoogle ScholarPubMed
25Kramer, M.J., Besser, M.F., Rozhkova, E. Sordelet, D.J.: Influence of short-range order on devitrification in Zr70Pd20Cu10 metallic glasses. Intermetallics 12, 1119 2004CrossRefGoogle Scholar
26Mattern, N., Eckert, J., Seidel, M., Kühn, U., Doyle, S. Bäcker, I.: Relaxation and crystallization of amorphous Zr65Al7.5Cu17.5Ni10. Mater. Sci. Eng., A 226–228, 468 1997CrossRefGoogle Scholar
27Samwer, K., Busch, R. Johnson, W.L.: Change of compressibility at the glass transition and Prigogine-Defay ratio in ZrTiCuNiBe alloys. Phys. Rev. Lett. 82, 580 1999CrossRefGoogle Scholar
28Ramanurty, U., Lee, M.L., Basu, J. Li, Y.: Embrittlement of a bulk metallic glass due to low-temperature annealing. Scripta Mater. 47, 107 2002CrossRefGoogle Scholar
29Slipenyuk, A. Eckert, J.: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Mater. 50, 39 2004CrossRefGoogle Scholar
30Ilinsky, A.G., Maslov, V.V., Nozenko, V.K. Braovko, A.P.: On determination of volume fraction of crystalline phase in partially crystallized amorphous and nanocrystalline materials. J. Mater. Sci. 35, 4495 2000CrossRefGoogle Scholar
31Kim, S.U., Kim, K.H. Koo, Y.M.: The crystal fraction determination of the nanocrystalline phase transformed from the Fe-base amorphous matrix using EXAFS. J. Alloys Compd. 368, 357 2004CrossRefGoogle Scholar
32Wei, B.C., Yu, G.S., Löser, W., Xia, L., Roth, S., Wang, W.H. Eckert, J.: Deformation behavior and dilatometric measurements of Nd–Fe based bulk metallic glass. Mater. Sci. Eng., A 375–377, 1161 2004CrossRefGoogle Scholar
33Shek, C.H. Lin, G.M.: Dilatometric measurements and calculation of effective pair potentials for Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. Mater. Lett. 57, 1229 2003CrossRefGoogle Scholar
34Ausanio, G., Iannotti, V., Granozio, F.M., Meneghini, C., Minicucci, M., Ricci, F. Lanotte, L.: EXAFS analysis of short-range rearrangement during transition from the amorphous to the crystalline phase in ferromagnetic metallic glass. J. Magn. Magn. Mater. 242–245, 904 2002CrossRefGoogle Scholar
35Sadoc, A., Kim, J.Y. Kelton, K.F.: Local atomic structure of icosahedral quasicrystals and 1/1 approximant in the Ti–Ni–Zr alloy system. Mater. Sci. Eng., A 294–296, 348 2000CrossRefGoogle Scholar
36Lee, K.S. Chang, Y.W.: Deformation behavior of Zr-based bulk metallic glass in an undercooled liquid state under compressive loading. Metal. Mater. Int. 11, 53 2005CrossRefGoogle Scholar
37Rehr, J.J. Albers, R.C.: Scattering-matrix formulation of curved-wave multiple-scattering theory—Application to x-ray absorption fine structure. Phys. Rev. B 41, 8139 1990CrossRefGoogle ScholarPubMed
38Wang, G., Shen, J., Sun, J.F., Zhou, B.D., Gerald, J.D. Fitz, Llewellyn, D.J. Stachurski, Z.H.: Isothermal nanocrystallization behavior of Zr41.25Ti13.75Cu12.5Ni10.0Be22.5 bulk metallic glass in the supercooled liquid region. Scripta Mater. 53, 641 2005CrossRefGoogle Scholar
39Liu, T., Bian, X.F. Jiang, J.: Relation between calculated Lennard–Jones potential and thermal stability of Cu-based bulk metallic glasses. Phys. Lett. A 353, 497 2006Google Scholar
40Reger-Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J. Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 1998CrossRefGoogle Scholar
41Chen, H.S., Kato, H., Inoue, A., Saida, J. Nishiyama, N.: Thermal evidence of stress-induced structural disorder of a Zr55Al10Ni5Cu30 glassy alloy in the non-Newtonian region. Appl. Phys. Lett. 79, 60 2001CrossRefGoogle Scholar
42Safarik, D.J., Cady, C.M. Schwarz, R.B.: Shear processes in bulk metallic glasses. Acta Mater. 53, 2193 2005CrossRefGoogle Scholar
43De Hey, P., Sietsma, J. Van den Beukel, A.: Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater. 46, 5873 1998CrossRefGoogle Scholar
44Spaepen, F.: Homogeneous flow of metallic glasses: A free volume perspective. Scripta Mater. 54, 363 2006CrossRefGoogle Scholar
45Reger-Leonhard, A., Heilmaier, M. Eckert, J.: Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glassy alloys. Scripta Mater. 43, 459 2000CrossRefGoogle Scholar
46Heilmaier, M.: Deformation behavior of Zr-based metallic glasses. J. Mater. Proc. Technol. 117, 374 2001CrossRefGoogle Scholar
47Nieh, T.G., Schuh, C., Wadsworth, J. Li, Y.: Strain rate-dependent deformation in bulk metallic glasses. Intermetallics 10, 1177 2002CrossRefGoogle Scholar
48Waniuk, T., Schroers, J. Johnson, W.L.: Timescales of crystallization and viscous flow of the bulk glass-forming Zr–Ti–Ni– Cu–Be alloys. Phys. Rev. B 67, 184203 2003CrossRefGoogle Scholar
49Porscha, B. Neuhäuser, H.: Combined measurements of length and modulus change and calculation of effective pair potentials for the amorphous alloy Cu64Ti36. Phys. Status Solidi B 186, 119 1994CrossRefGoogle Scholar
50Fu, X.L., Li, Y. Schuh, C.A.: Mechanical properties of metallic glass matrix composites: Effects of reinforcement character and connectivity. Scripta Mater. 56, 617 2007CrossRefGoogle Scholar
51Lee, M.L., Li, Y. Schuh, C.A.: Effect of a controlled volume fraction of dendrite phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 2004CrossRefGoogle Scholar
52Cohen, M.H. Grest, G.S.: The nature of the glass transition. J. Non-Cryst. Solids 61, 749 1984CrossRefGoogle Scholar
53Cohen, M.H. Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 1959CrossRefGoogle Scholar
54Taub, A.I. Luborsky, F.E.: Creep, stress-relaxation and structural-change of amorphous-alloys. Acta Metall. 29, 1939 1981CrossRefGoogle Scholar
55Johnson, W.L., Lu, J. Demetriou, M.D.: Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids—A self consistent dynamic free volume model. Intermetallics 10, 1039 2002CrossRefGoogle Scholar
56Na, Y.S. Lee, J.H.: Interpretation of viscous deformation of Zr-based bulk metallic glass alloys based on Nabarro–Herring creep model. Metal. Mater. Int. 12, 115 2006CrossRefGoogle Scholar
57Nieh, T.G. Wadsworth, J.: Homogeneous deformation of bulk metallic glasses. Scripta Mater. 54, 387 2006CrossRefGoogle Scholar
58Kobata, J., Tsuda, H., Takigawa, Y. Higashi, K.: Effect of microstructural change on high-temperature deformation in pre-annealed Zr65Al10Ni10Cu15 bulk metallic glass. Mater. Trans., JIM 46, 2864 2005CrossRefGoogle Scholar
59Wolff, U., Pryds, N., Johnson, E. Wert, J.A.: The effect of partial crystallization on elevated temperature flow stress and room temperature hardness of a bulk amorphous Mg60Cu30Y10 alloy. Acta Mater. 52, 1989 2004CrossRefGoogle Scholar
60Fu, X., Li, Y. Schuh, C.A.: Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement. J. Mater. Res. 22, 1564 2007CrossRefGoogle Scholar