Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T10:03:43.646Z Has data issue: false hasContentIssue false

Influence of Al on glass forming ability and nanocrystallization behavior of cast-iron based bulk amorphous alloy

Published online by Cambridge University Press:  10 March 2015

Hyo Yun Jung*
Affiliation:
Institute for Complex Materials, IFW Dresden, D-01069 Dresden, Germany
Mihai Stoica
Affiliation:
Institute for Complex Materials, IFW Dresden, D-01069 Dresden, Germany; and Politehnica University of Timisoara, 300006 Timisoara, Romania
Seong Hoon Yi
Affiliation:
Department of Materials Science and Metallurgical Engineering, Kyungpook National University, Daegu 702-701, South Korea
Do Hyang Kim
Affiliation:
Department of Metallurgical Engineering, Center for Non-crystalline Materials, Yonsei University, 120-749 Seoul, South Korea
Jürgen Eckert
Affiliation:
Institute for Complex Materials, IFW Dresden, D-01069 Dresden, Germany; and Institute of Materials Science, University of Technology Dresden, D-01062 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cast-iron (CI) based bulk amorphous alloy with compositions of Fe75.5−xC6.0Si3.3B5.5P8.7Cu1.0Alx (x = 0, 1 at.%) was synthesized by Cu mold casting. As indicated by increased critical diameters (dmax) for the amorphization, the substitution of Al enhanced the glass-forming ability of the alloy. However, the onset temperature of crystallization (Tx) and the range of supercooled liquid region (ΔTx) of the alloy decreased upon Al addition from 500 °C and 28 °C to 475 °C and 25 °C, respectively. It was revealed that the decreased thermal stability of the amorphous phase is related to the enhanced crystallization tendency to form primary α-Fe phase. Upon the nanocrystallization of primary α-Fe phase the Al-added alloy shows enlarged Ms of 176 emu g−1, still keeping a reasonable small Hc value of 0.086 Oe. The present study revealed that the minor Al addition enhances not only the glass-forming ability, but also the nanocrystallization behavior of the CI based bulk amorphous alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lashgari, H.R., Chua, D., Xie, S., Sun, H., Ferry, M., and Li, S.: Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study. J. Non-Cryst. Solids 391, 61 (2014).CrossRefGoogle Scholar
Leary, A.M., Ohodnicki, P.R., and McHenry, M.E.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772 (2012).CrossRefGoogle Scholar
Yoshizawa, Y., Oguma, S., and Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
Suzuki, K., Makino, A., Kataoka, N., Inoue, A., and Masumoto, T.: High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B and Fe-Zr-B-M (M = transition metal) alloys with nanoscale grain size. Mater. Trans., JIM 32, 93 (1991).CrossRefGoogle Scholar
Kulik, T.: Nanocrystallization of metallic glasses. J. Non-Cryst. Solids 287, 145 (2001).CrossRefGoogle Scholar
Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397 (1990).CrossRefGoogle Scholar
Ohta, M. and Yoshizawa, Y.: New high-Bs Fe-based nanocrystalline soft magnetic alloys. Jpn. J. Appl. Phys. 46, L477 (2007).CrossRefGoogle Scholar
Makino, A., Men, H., Kubota, T., Yubuta, K., and Inoue, A.: FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 tesla produced by crystallizing hetero-amorphous phase. Mater. Trans. 50, 204 (2009).CrossRefGoogle Scholar
Inoue, A. and Wang, X.M.: Bulk amorphous FC20 (Fe–C–Si) alloys with small amounts B and their crystallized structure and mechanical properties. Acta Mater. 48, 1383 (2000).CrossRefGoogle Scholar
Kane, S.N., Lee, H.J., Jeong, Y.H., and Varga, L.K.: Cast iron (CI) based soft magnetic BMG Ci88.3Al2Ga1P4.35B4.35 . J. Phys.: Conf. Ser. 144, 012040 (2009).Google Scholar
Takenaka, K., Nishijima, M., and Makino, A.: Effect of metalloid elements on the structures and soft magnetic properties in Fe85.2Si x B14−xy P y Cu0.8 alloys. IEEE Trans. Magn. 50(4), 2004704 (2014).CrossRefGoogle Scholar
Gheiratmand, T., Madaah Hosseini, H.R., Davami, P., Gjoka, M., Loizos, G., and Aashuri, H.: Effect of annealing on soft magnetic behavior of nanostructured (Fe0.5Co0.5)73.5Si13.5B9Nb3Cu1 ribbons. Alloys Compd. 582, 79 (2014).CrossRefGoogle Scholar
Chen, F.G. and Wang, Y.G.: Investigation of glass forming ability, thermal stability and soft magnetic properties of melt-spun Fe83P16−x Si x Cu1 (x = 0, 1, 2, 3, 4, 5) alloy ribbons. Alloys Compd. 584, 377 (2014).CrossRefGoogle Scholar
Shi, M., Li, R., Wang, J., Liu, Z., Luo, X., and Zhang, T.: Effects of minor Cu addition on glass-forming ability and magnetic properties of FePCBCu alloys with high saturation magnetization. Philos. Mag. 93(17), 2182 (2013).CrossRefGoogle Scholar
Jung, H.Y. and Yi, S.: Enhanced glass forming ability and soft magnetic properties through an optimum Nb addition to a Fe–C–Si–B–P bulk metallic glass. Intermetallics 18, 1936 (2010).CrossRefGoogle Scholar
Jung, H.Y. and Yi, S.: Effect of Cu addition on nanocrystallization behaviors and magnetic properties of the Fe76.5−x C6.0Si3.3B5.5P8.7Cu x (x = 0–3 at.%) bulk metallic glass. J. Alloys Compd. 561, 76 (2013).CrossRefGoogle Scholar
Hono, K., Ping, D.H., Ohnuma, M., and Onodera, H.: Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Mater. 47, 997 (1999).CrossRefGoogle Scholar
Ohkubo, T., Kai, H., Ping, D.H., Hono, K., and Hirotsu, Y.: Mechanism of heterogeneous nucleation of a-Fe nanocrystals from Fe89Zr7B3Cu1 amorphous alloy. Scr. Mater. 44, 971 (2001).CrossRefGoogle Scholar
Yoshizawa, Y. and Yamauchi, K.: Magnetic-properties of FeCuCrSiB, FeCuVSiB, FeCuMoSiB, alloys. Mater. Sci. Eng., A 133, 176 (1991).CrossRefGoogle Scholar
Lefebvre, W., Morin-Grognet, S., and Danoix, F.: Role of niobium in nanocrystallization of a Fe73.5Si13.5B9Nb3Cu1 alloy. J. Magn. Magn. Mater. 301, 343 (2006).CrossRefGoogle Scholar
Lim, S.H., Pi, W.K., Noh, T.H., Kim, H.J., and Kang, I.K.: Effects of Al on the magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Appl. Phys. 73, 6591 (1993).CrossRefGoogle Scholar
Tate, B.J., Parmar, B.S., Todd, I., Davies, H.A., Gibbs, M.R.J., and Major, R.V.: Soft magnetic properties and structures of nanocrystalline Fe-Al-Si-B-Cu-Nb alloy ribbons. J. Appl. Phys. 83, 6335 (1998).CrossRefGoogle Scholar
Moya, J., Garcia, M.J., Vazquez, M., and Sirkin, H.: Role of aluminium in structural and magnetic properties of nanocrystalline alloy FeSiBNbCu. J. Phys. IV 8, 135 (1998).Google Scholar
Chen, M.W., Sakai, A., Inoue, A., Wang, X.M., Watanabe, Y., and Sakurai, T.: Partitioning behavior of Al in a nanocrystalline FeZrBAl soft magnetic alloy. J. Appl. Phys. 87, 439 (2000).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Gook, J.S., Lee, K.K., Yoon, D.J., and Choi, J.: Effect of additional elements (Al, Ga) on the thermal stability of supercooled liquid in Fe-P-C-B-AL-Ga glassy alloys. J. Kor. Inst. Met. Mater. 36, 1757 (1998).Google Scholar
Chen, N., Martin, L., Luzgyune-Luygin, D.V., and Inoue, A.: Role of alloying additions in glass formation and properties of bulk metallic glasses. Materials 3, 5320 (2010).CrossRefGoogle ScholarPubMed
Lin, X.H. and Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
Cullity, B.D. and Graham, C.D.: Introduction to Magnetic Materials, 2nd ed. (Wiley-IEEE Press, New Jersey, 2008); 54 pp.CrossRefGoogle Scholar
Ohnuma, M., Hono, K., Linderoth, S., Pedersen, J.S., Yoshizawa, Y., and Onodera, H.: Small-angle neutron scattering and differential scanning calorimetry studies on the copper clustering stage of Fe–Si–B–Nb–Cu nanocrystalline alloys. Acta Mater. 48, 4783 (2000).CrossRefGoogle Scholar
Otte, H.M.: Lattice parameter determinations with an x-ray spectrogoniometer by the Debye-Scherrer method and the effect of specimen condition. J. Appl. Phys. 32, 1536 (1961).CrossRefGoogle Scholar
Jung, H.Y., Stoica, M., Yi, S., Kim, D.H., and Eckert, J.: Crystallization kinetics of Fe76.5−x C6.0Si3.3B5.5P8.7Cu x (x = 0, 0.5, and 1 at.%) bulk amorphous alloy. Metall. Mater. Trans. A (Online) 29 August, 2014, doi: 10.1007/s11661-014-2536-2.Google Scholar