Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T23:04:29.388Z Has data issue: false hasContentIssue false

Indium-tin oxide thin films by metal-organic decomposition

Published online by Cambridge University Press:  03 March 2011

Dennis Gallagher
Affiliation:
Laboratoire de Technologie des Poudres, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Francis Scanlan
Affiliation:
Laboratoire de Technologie des Poudres, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Raymond Houriet
Affiliation:
Laboratoire de Technologie des Poudres, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Hans Jörg Mathieu
Affiliation:
Laboratoire de Technologie des Poudres, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Terry A. Ring*
Affiliation:
Laboratoire de Technologie des Poudres, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
*
d)Author to whom correspondence should be sent.
Get access

Abstract

In2O3–SnO2 films were produced by thermal decomposition of a deposit which was dip coated on borosilicate glass substrates from an acetylacetone solution of indium and tin acetoacetonate. Thermal analysis showed complete pyrolysis of the organics by 400 °C. The thermal decomposition reaction generated acetylacetone gas and was found to be first order with an activation energy of 13.6 Kcal/mole. Differences in thermal decomposition between the film and bulk materials were noted. As measured by differential scanning calorimetry using a 40 °C/min temperature ramp, the glass transition temperature of the deposited oxide film was found to be ∼462 °C, and the film crystallization temperature was found to be ∼518 °C. For film fabrication, thermal decomposition of the films was performed at 500 °C in air for 1 h followed by reduction for various times at 500 °C in a reducing atmosphere. Crystalline films resulted for these conditions. A resistivity of ∼1.01 × 10−3 Ω · cm, at 8 wt. % tin oxide with a transparency of ∼95% at 400 nm, has been achieved for a 273 nm thick film.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Maruyama, T. and Kojima, A., Jpn. J. Appl. Phys. 27 (10), L18291831 (1988).CrossRefGoogle Scholar
2Dawar, A. L. and Joshi, J. C., J. Mater. Sci. 19, 123 (1984).CrossRefGoogle Scholar
3Arfsten, N. J., Kaufman, R., and Dislich, H., in infrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D.R. (John Wiley, New York, 1984), pp. 189196.Google Scholar
4Arfsten, N. J., Kaufman, R., and Dislich, H., German Patent DE 3300589, July 12, 1984.Google Scholar
5Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60 (11), R123R159 (1986).CrossRefGoogle Scholar
6Frank, G., Köstlin, H., and Rabenau, A., Phys. Status Solidi (A) 52, 231238 (1979).CrossRefGoogle Scholar
7Fan, J. C. C. and Goodenough, J. B., J. Appl. Phys. 48 (8),' 35243531 (1977).CrossRefGoogle Scholar
8Desag, Grünenplan, Germany (AF–45).Google Scholar
9Omicron Spectrometer, Kevex Instruments, San Carlos, CA 94070.Google Scholar
10SFM-BD2-210, Park Scientific Instruments, Mountain View, CA 94043.Google Scholar
11Fluka, Buchs, Switzerland (technical grade).Google Scholar
12Fluka, Buchs, Switzerland (reagent grade).Google Scholar
13Nicolet 510 FTIR spectrometer, Nicolet Analytical, Madison, WI.Google Scholar
14Carbagas, Lausanne, Switzerland (technical grade).Google Scholar
15Mettler TG 50, Mettler, Zurich, Switzerland.Google Scholar
16Mettler DSC 30, Mettler, Zurich, Switzerland.Google Scholar
17Chemical Data System Pyroprobe 200, CDS, Oxford, PA.Google Scholar
18Varian 3400, Varian Ass., Sunnyvale, CA.Google Scholar
19Finnigan-MAT Ion Trap Mass Spectrometer ITMS, Finnigan-MAT, San Jose, CA.Google Scholar
20Scanlan, F. P. and Houriet, R., J. Trace Microprobe Technol. 9, 177199 (1991).Google Scholar
21PHI 5500 Perkin-Elmer, Norwalk, CT 00856.Google Scholar
22A-DIDA 3000(Atomika) Perkin-Elmer, Norwalk, CT 00856.Google Scholar
23van der Pauw, L. J., Philips Res. Rep. 13 (1), 19 (1958).Google Scholar
24Sze, S. M., Physics of Semiconductor Devices, 2nd Edition (John Wiley & Sons, New York, 1981), pp. 3133.Google Scholar
25Perkin-Elmer Lambda 6, Norwalk, CT 00856.Google Scholar
26Roberts, J. D. and Caserio, M. C., Basic Principles of Organic Chemistry (W. A. Benjamin, Inc., New York, 1965), p. 498.Google Scholar
27This peak at 346 nm is similar to that observed for A1(C5H7O2)2.Google Scholar
28Allred, A. L. and Thompson, D. W., Inorg. Chem. 7, 11961201 (1968).CrossRefGoogle Scholar
29Jones, R. W. and Fay, R. C., Inorg. Chem. 12, 25992606 (1973).CrossRefGoogle Scholar
30Faller, J. W. and Davidson, A., Inorg. Chem. 6, 182184 (1967).CrossRefGoogle Scholar
31Thompson, D. W., Lefelhoxz, J. F., and Wong, K. S., Inorg. Chem. 11, 11391141 (1972).CrossRefGoogle Scholar
32Inagaki, N. and Ohkubo, J., J. Appl. Polym. Sci. 43 (4), 793800 (1991).CrossRefGoogle Scholar
33Deryagin, B. V., DAN USSR. 39, 11 (1943); reviewed in Deryagin, B.M. and Levi, S.M., The Focal Press, London (1964).Google Scholar
34Morozova, N. B., Mit'kin, V.N., and Igumenov, I.K., Russ. J. Inorg. Chem. 33 (10), 14591464 (1988).Google Scholar
35Sharpe, P. and Richardson, D. E., J. Am. Chem. Soc. 113, 83398340 (1991).CrossRefGoogle Scholar
36Ta2O5/Ta certified reference material, CRM 261 R, BCR Brussels.Google Scholar
37Vossen, J. L., RCA Rev. 32, 289296 (1971).Google Scholar