Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T11:52:31.940Z Has data issue: false hasContentIssue false

In situ x-ray study of the γ- to α-Al2O3 phase transformation during atmospheric pressure oxidation of NiAl(110)

Published online by Cambridge University Press:  03 March 2011

A. Vlad
Affiliation:
Max-Planck Institut für Metallforschung, D-70569 Stuttgart, Germany
A. Stierle*
Affiliation:
Max-Planck Institut für Metallforschung, D-70569 Stuttgart, Germany
N. Kasper
Affiliation:
Max-Planck Institut für Metallforschung, D-70569 Stuttgart, Germany; and Angströmquelle Karlsruhe (ANKA), FZ Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany
H. Dosch
Affiliation:
Max-Planck Institut für Metallforschung, D-70569 Stuttgart, Germany; and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck Institut für Metallforschung, D-70569 Stuttgart, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The oxidation in air of NiAl(110) was investigated in the temperature range from 870 °C–1200 °C by in situ x-ray diffraction and transmission electron microscopy. Oxidation at 870 °C and 1 bar oxygen leads to the formation of an epitaxial layer of γ-alumina showing an R30° orientation relationship with respect to the underlying substrate. At oxidation temperatures between 950 °C and 1025 °C, we observed a coexistence of epitaxial γ- and polycrystalline δ-Al2O3. The α-Al2O3 starts to form at 1025 °C and the complete transformation of metastable phases to the stable α-alumina phase takes place at 1100 °C. The fcc-hcp martensitic-like transformation of the initial γ-Al2O3 to epitaxial α-Al2O3 was observed. X-ray diffraction and cross-section transmission electron microscopy proved the existence of a continuous epitaxial α-Al2O3 layer between the substrate and the polycrystalline oxide scale, having a thickness of about 150 nm. The relative orientation relationship between the epitaxial alumina and the underlying substrate was found to be NiAl(110) || α-Al2O3 (0001) and [110] NiAl || [1120].

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stierle, A., Renner, F., Streitel, R., Dosch, H., Drube, W., Cowie, B.C.: X-ray diffraction study of the ultrathin Al2O3 layer on NiAl(110). Science 303, 1652 (2004).CrossRefGoogle Scholar
2.Kresse, G., Schmid, M., Napetschnig, E., Shishkin, M., Köhler, L., Varga, P.: Structure of the ultrathin aluminium oxide film on NiAl(110). Science 308, 1440 (2005).CrossRefGoogle ScholarPubMed
3.Stierle, A., Renner, F., Streitel, R., Dosch, H.: Observation of bulk forbidden defects during the oxidation of NiAl(110). Phys. Rev. B 64, 165413 (2001).CrossRefGoogle Scholar
4.Stierle, A., Formoso, V., Comin, F., Franchy, R.: Surface x-ray diffraction study on the initial oxidation of NiAl(100). Surf. Sci. 85, 467 (2000).Google Scholar
5.Finnis, M.W., Lozovoi, A.Y., Alavi, A.: The oxidation of NiAl: What can we learn from ab initio calculations? Annu. Rev. Mater. Res. 35, 167 (2005).Google Scholar
6.Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for the gas-turbine engine applications. Science 296, 280 (2002).CrossRefGoogle ScholarPubMed
7.Yang, J.C., Schumann, E., Müllejans, H., Rühle, M.: Chemistry and bonding at NiAl/γ-Al2O3 interfaces. J. Phys. D: Appl. Phys. 29, 1716 (1996).CrossRefGoogle Scholar
8.Yang, J.C., Schumann, E., Levin, I., Rühle, M.: Transient oxidation of NiAl. Acta Mater. 46, 2195 (1998).Google Scholar
9.Yang, J.C., Nadarzinski, K., Schumann, E., Rühle, M.: Electron microscopy studies of NiAl/γ-Al2O3 interfaces. Scr. Metallurg. Mater. 33, 1043 (1995).Google Scholar
10.Bobeth, M., Bischoff, E., Schumann, E., Rockstroh, M., Rühle, M.: Aluminium depletion profiles in oxidized NiAl single crystals. Corros. Sci. 37, 657 (1995).Google Scholar
11.Grabke, H.J.: Oxidation of NiAl and FeAl. Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
12.Brumm, M.W., Grabke, H.J.: The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys. Corros. Sci. 33, 1677 (1992).CrossRefGoogle Scholar
13.Brumm, M.W., Grabke, H.J.: Oxidation behaviour of NiAl-II. Cavity formation beneath the oxide scale on NiAl of different stoichiometries. Corros. Sci. 34, 547 (1993).CrossRefGoogle Scholar
14.Brumm, M.W., Grabke, H.J., Wagemann, B.: The oxidation of NiAl-III. Internal and intergranular oxidation. Corros. Sci. 36, 37 (1994).CrossRefGoogle Scholar
15.Schumann, E., Sarioglu, C., Blachere, J.R., Pettit, F.S., Meier, G.H.: High-temperature stress measurements during the oxidation of NiAl. Oxidation Metals 53, 259 (2000).Google Scholar
16.Heuer, A.H., Reddy, A., Hovis, D.B., Veal, B., Paulikas, A., Vlad, A., Rühle, M.: The effect of surface orientation on oxidation-induced growth strains in single crystal NiAl: An in situ synchrotron study. Scr. Mater. 54, 1907 (2006).Google Scholar
17.Pies, W., Weiss, A. Numerical data and functional relationships in science and technology. New Series. Group III: Crystal and Solid State Physics, Vol. 7, edited by Hellwege, K-H. and Hellwege, A.M. (Springer-Verlag, Berlin, 1997) p. 56.Google Scholar
18.Wilson, S.J.: Phase transformation and development of microstructure in boehemite-derived transition aluminas. Proc. Br. Ceram. Soc. 28, 281 (1979).Google Scholar
19.Lippens, B.C., De Boer, J.H.: Study of phase transformation during calcination of aluminum hydroxides by selected area diffraction. Acta Crystallogr. 17, 1312 (1964).Google Scholar
20.Levin, I., Brandon, D.: Metastable alumina polymorphs. Crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995 (1998).CrossRefGoogle Scholar
21.Lee, W.E., Lagerlof, K.P.D.: Structural and electron diffraction data for sapphire. J. Electron Micr. Technol. 2, 247 (1985).Google Scholar
22.Jayaram, V., Levi, C.G.: The structure of δ-alumina evolved from the melt and the γ → δ transformation. Acta Metall. 37, 569 (1989).Google Scholar
23.Ealet, B., Elyakhloufi, M.H., Gillet, E., Ricci, M.: Electronic and crystallographic structure of γ-alumina thin films. Thin Solid Films 250, 92 (1994).CrossRefGoogle Scholar
24.Mo, S.D., Xu, Y.N., Ching, W.Y.: Electronic and structural properties of bulk γ-Al2O3. J. Am. Ceram. Soc. 80, 1193 (1997).CrossRefGoogle Scholar
25.Paglia, G., Rohl, A.L., Buckley, C.E., Gale, J.D.: Determination of the structure of γ-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model. Phys. Rev. B 71, 224115 (2005).CrossRefGoogle Scholar
26.Paglia, G., Buckley, C.E., Rohl, A.L., Hunter, B.A., Hart, R.D., Hanna, J.V., Byrne, L.T.: Tetragonal structure model for boehmite-derived γ-alumina. Phys. Rev. B 68, 144110 (2003).Google Scholar
27.Essmann, U., Henes, R., Holzwarth, U., Kloppfer, F., Büchler, E.: Containerless growth and annealing behaviour of NiAl single crystals. Phys. Status Solidi A 160, 487 (1997).Google Scholar
28.Stierle, A., Steinhäuser, A., Rühm, A., Renner, F.U., Weigel, R., Kasper, N., Dosch, H.: Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin Films. Rev. Sci. Instrum. 75, 5302 (2004).Google Scholar
29.Wassermann, G.: Influence of the α-γ-transformation of an irreversible Ni steel onto crystal orientation and tensile strength. Arch. Eisenhüttenwes 126, 647 (1933).Google Scholar
30.Nishiyama, Z.: X-ray investigation of the mechanism of the transformation from face-centered cubic lattice to body-centered cubic. Sci. Rep. Tohoku Univ. 23, 638 (1934).Google Scholar
31.Kurdjumov, G., Sachs, G.: On the mechanism of steel hardening. Z. Phys. 64, 325 (1930).Google Scholar
32.Gotoh, Y., Fukuda, H.: Interfacial energy of the bcc(110)/fcc(111) interface and energy dependence on its size. Surf. Sci. 223, 315 (1989).CrossRefGoogle Scholar
33.Robinson, I.K., Tweet, D.J.: Surface x-ray diffraction. Rep. Prog. Phys. 55, 599 (1992).Google Scholar
34.Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Lee, T.Y.R. Thermophysical properties of matter, in Thermal Expansion: Nonmetallic Solids, Vol. 13, edited by Touloukian, Y.S. and Ho, C.Y. (IFI/Plenum, New York, 1977) p. 176.Google Scholar
35.Hou, P.Y., Paulikas, A.P., Veal, B.W.: Growth strains and stress relaxation in alumina scales during high-temperature oxidation. Sixth Symposium on High-Temperature Corrosion and Protection of Materials, May 16–21, 2004, Lez Embiez, France. Mater. Sci. Forum 461–464, 671 (2004).Google Scholar
36.Strecker, A., Salzberger, U., Mayer, J.: Specimen preparation for transmission electron microscopy: Reliable method for cross-sections and brittle materials. Prakt. Metallogr. 30, 482 (1993).Google Scholar