Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T06:49:25.821Z Has data issue: false hasContentIssue false

In situ Transmission Electron Microscopy Studies on Structural Dynamics of Transition Metal Nanoclusters

Published online by Cambridge University Press:  01 July 2005

T. Vystavel
Affiliation:
Department of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, 9747 AG Groningen, The Netherlands
S.A. Koch
Affiliation:
Department of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, 9747 AG Groningen, The Netherlands
G. Palasantzas
Affiliation:
Department of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, 9747 AG Groningen, The Netherlands
J.Th.M. De Hosson*
Affiliation:
Department of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, 9747 AG Groningen, The Netherlands
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structural stability of transition metal nanoclusters has been scrutinized with in situ transmission electron microscopy as a function of temperature. In particular iron, cobalt, niobium, and molybdenum clusters with diameters around 5 nm have been investigated. During exposure to air, a thin oxide shell with a thickness of 2 nm is formed around the iron and cobalt clusters, which is thermally unstable under moderate high vacuum annealing above 200 °C. Interestingly, niobium clusters oxidize only internally at higher temperatures without the formation of an oxide shell. They are unaffected under electron beam irradiation, whereas iron and cobalt undergo severe structural changes. Further, no cluster coalescence of niobium takes place, even during annealing up to 800 °C, whereas iron and cobalt clusters coalesce after decomposition of the oxide, as long as the clusters are in close contact. In contrast to niobium, molybdenum clusters do not oxidize upon annealing; they are stable under electron beam irradiation and coalesce at temperatures higher than 800 °C. In all cases, the coalescence process indicates a strong influence of the local environment of the cluster.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nanomaterials Synthesis, Properties and Applications, edited by Edelstein, A.S. and Cammarata, R.C. (Institute of Physics Publishing, Bristol, U.K., 1998).Google Scholar
2de Heer, W.: The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993).Google Scholar
3Melinon, P., Paillard, V., Dupuis, V., Perez, A., Jensen, P., Hoareau, A., Perez, J.P., Tuaillon, J., Broyer, M., Vialle, J.L., Pellarin, M., Baguenard, B. and Lermé, J.: From free clusters to cluster-assembled materials. Int. J. Mod. Phys. B. 9, 339 (1995).CrossRefGoogle Scholar
4Eberhardt, W.: Clusters as new materials. Surf. Sci. 500, 242 (2002).CrossRefGoogle Scholar
5Science Nanostructure and Technology: A Worldwide Study, edited by Siegel, R.W., Hu, E., and Roco, M.C. (National Science and Technology Council, Washington, D.C., 1999).Google Scholar
6Palmer, R., Pratontep, S. and Boyen, H.: Nanostructured surfaces from size-selected clusters. Nat. Mater. 2, 443 (2003).Google Scholar
7Haberland, H., Karrais, M., Mall, M. and Thurner, Y.: Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A 10, 3266 (1992).CrossRefGoogle Scholar
8Haberland, H., Moseler, M., Qiang, Y., Rattunde, O., Reiners, T. and Thurner, Y.: Energetic cluster impact (ECI): A new method for thin-film formation. Surf. Rev. Lett. 3, 887 (1996).Google Scholar
9Jensen, P.: Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71, 1695 (1999).CrossRefGoogle Scholar
10Binns, C.: Nanoclusters deposited on surfaces. Surf. Sci. Rep. 44, 1 (2001).CrossRefGoogle Scholar
11Bowker, M.: The going rate for catalysts. Nat. Mater. 1, 205 (2002).CrossRefGoogle ScholarPubMed
12Bennett, R.A., Tarr, D.M. and Mulheran, P.A.: Ripening processes in supported and pinned nanoclusters-experiment, simulation and theory. J. Phys. Condens. Matter 15, S3139 (2003).CrossRefGoogle Scholar
13Combe, N., Jensen, P. and Pimpinelli, A.: Changing shapes in the nanoworld. Phys. Rev. Lett. 85, 110 (2000).Google Scholar
14Marks, L.D.: Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603 1994 and references therein.CrossRefGoogle Scholar
15Marks, L.D. and Smith, D.J.: Direct surface imaging in small metal particles. Nature 303, 316 (1983).CrossRefGoogle Scholar
16Bovin, J-O. and Malm, J-O.: High resolution electron microscopy structure images of metal particles. Acta Chem. Scand. A. 45, 791 (1991).CrossRefGoogle Scholar
17Buffat, P-A., Flüeli, M., Spycher, R., Stadelmann, P. and Borel, J-P.: Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss. 92, 173 (1991).Google Scholar
18Yao, Y.D., Chen, Y.Y., Lee, S.F., Chang, W.C. and Hu, H.L.: Magnetic and thermal studies of nano-size Co and Fe particles. J. Magn. Magn. Mater. 239, 249 (2002).CrossRefGoogle Scholar
19Yao, Y.D., Chen, Y.Y., Hsu, C.M., Lin, H.M., Tung, C.Y., Tai, M.F., Wang, D.H., Wu, K.T. and Suo, C.T.: Thermal and magnetic studies of nanocrystalline Ni. Nanostruct. Mater. 6, 933 (1995).CrossRefGoogle Scholar
20Vystavel, T., Palasantzas, G., Koch, S.A. and Hosson, J.T.M.D.: Niobium nanoclusters studied with in situ transmission electron microscopy. Appl. Phys. Lett. 83, 3909 (2003).CrossRefGoogle Scholar
21Vystavel, T., Palasantzas, G., Koch, S.A. and De Hosson, J.T.M.: Nanosized iron clusters investigated with in situ transmission electron microscopy. Appl. Phys. Lett. 82, 197 (2003).CrossRefGoogle Scholar
22Binns, C., Baker, S.H., Maher, M.J., Louch, S., Thornton, S.C., Edmonds, K.W., Dhesi, S.S. and Brookes, N.B.: Magnetism in Fe nanoclusters—From isolated particles to nanostructured materials. Phys. Status Solidi 189, 339 (2002).3.0.CO;2-8>CrossRefGoogle Scholar
23Bødker, F., Mørup, S. and Linderoth, S.: Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994).CrossRefGoogle ScholarPubMed
24Gangopadhyay, S., Hadjipanayis, G.C., Shah, S.I., Sorensen, C.M., Klabunde, K.J., Papaefthymiou, V. and Kostikas, A.: Effect of oxide layer on the hysteresis behavior of fine Fe particles. J. Appl. Phys. 70, 5888 (1991).CrossRefGoogle Scholar
25Gangopadhyay, S., Hadjipanayis, G.C., Dale, B., Sorensen, C.M., Klabunde, K.J., Papaefthymiou, V. and Kostikas, A.: Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778 (1992).CrossRefGoogle ScholarPubMed
26Gangopadhyay, S., Hadjipanayis, G.C., Sorensen, C.M. and Klabunde, K.J.: Exchange anisotropy in oxide passivated Co fine particles. J. Appl. Phys. 73, 6964 (1993).Google Scholar
27Holdenried, M., Hackenbroich, B. and Micklitz, H.: Systematic studies of tunneling magnetoresistance in granular films made from well-defined Co clusters. J. Magn. Magn. Mater. 231, L13 (2001).CrossRefGoogle Scholar
28Wiedwald, U., Spasova, M., Salabas, E.L., Ulmeanu, M., Farle, M., Frait, Z., Rodriguez, A. Fraile, Arvanitis, D., Sobal, N.S., Hilgendorff, M. and Giersig, M.: Ratio of orbital-to-spin magnetic moment in Co core-shell nanoparticles. Phys. Rev. B 68, 064424 (2003).Google Scholar
29Upward, M.D., Cotier, B.N., Moriarty, P., Beton, P.H., Baker, S.H., Binns, C. and Edmonds, K.: Deposition of Fe clusters on Si surfaces. J. Vac. Sci. Technol. B 18, 2646 (2000).CrossRefGoogle Scholar
30Dupuis, V., Perez, J.P., Tuaillon, J., Paillard, V., Melinon, P., Perez, A., Barbara, B., Thomas, L., Fayeulle, S. and Gay, J.M.: Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition. J. Appl. Phys. 76, 6676 (1994).Google Scholar
31Zimmermann, C.G., Yeadon, M., Nordlund, K., Gibson, J.M. and Averback, R.S.: Burrowing of Co nanoparticles on clean Cu and Ag surfaces. Phys. Rev. Lett. 83, 1163 (1999).Google Scholar
32Spencer, M.J.S., Hung, A., Snook, I.K. and Yarovsky, I.: Density-functional theory study of the relaxation and energy of iron surfaces. Surf. Sci. 513, 389 (2002).Google Scholar
33Lewis, L.J., Jensen, P. and Barrat, J-L.: Melting, freezing, and coalescence of gold nanoclusters. Phys. Rev. B. 56, 2248 (1997).Google Scholar
34Hansen, M.: Constitution of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar
35Kitakami, O., Sato, H., Shimada, Y., Sato, F. and Tanaka, M.: Size effect on the crystal phase of cobalt fine particles. Phys. Rev. B 56, 13849 (1997).CrossRefGoogle Scholar
36Sato, H., Kitakami, O., Sakurai, T., Shimada, Y., Otani, Y. and Fukamichi, K.: Structure and magnetism of hcp-Co fine particles. J. Appl. Phys. 81, 1858 (1997).CrossRefGoogle Scholar
37Petrucci, M., Pitt, C.W., Reynolds, S.R., Milledge, H.J., Mendelssohn, M.J., Dineen, C. and Freeman, W.G.: Growth of thin-film niobium and niobium oxide layers by molecular-beam epitaxy. J. Appl. Phys. 63, 900 (1988).CrossRefGoogle Scholar
38Freund, H-J.: Clusters and islands on oxides: From catalysis via electronics and magnetism to optics. Surf. Sci. 500, 271 (2002).Google Scholar