Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:41:15.980Z Has data issue: false hasContentIssue false

In situ Transmission Electron Microscopy Investigation of Radiation Effects

Published online by Cambridge University Press:  01 July 2005

R.C. Birtcher*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
M.A. Kirk*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K. Furuya
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 3015-0003, Japan
G.R. Lumpkin
Affiliation:
University of Cambridge, Cambridge, CB3-6DA United Kingdom
M-O. Ruault
Affiliation:
Center Nuclear Spectrometry and of Mass Spectrometry-Orsay, Orsay F-91405, France
*
a) Address all correspondence to this author. e-mail: [email protected]
b) Address all correspondence to this author. This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.
Get access

Abstract

In situ observation is of great value in the study of radiation damage utilizing electron or ion irradiation. We summarize the facilities and give examples of work found around the world. In situ observations of irradiation behavior have fallen into two broad classes. One class consists of long-term irradiation, with observations of microstructural evolution as a function of the radiation dose in which the advantage of in situ observation has been the maintenance of specimen position, orientation, and temperature. A second class has involved the recording of individual damage events in situations in which subsequent evolution would render the correct interpretation of ex situ observations impossible. In this review, examples of the first class of observation include ion-beam amorphization, damage accumulation, plastic flow, implant precipitation, precipitate evolution under irradiation, and damage recovery by thermal annealing. Examples of the second class of observation include single isolated ion impacts that produce defects in the form of dislocation loops, amorphous zones, or surface craters, and single ion impact-sputtering events. Experiments in both classes of observations attempt to reveal the kinetics underlying damage production, accumulation, and evolution.

Type
Reviews
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pashley, D.W. and Presland, A.E.B.: The relation between specimen contamination and the movement of dislocations produced in metal films during E. M. examination. Philos. Mag. 6, 1003 (1961).CrossRefGoogle Scholar
2Allen, C.W.: In situ irradiation effects studies in medium and high voltage TEM. In Proceedings of the 53rd Annual Microscopy Society of America Meeting, Kansas City, MO, 80, (1995).Google Scholar
3Allen, C.W. and Dorignac, D.: Survey of high voltage electron microscopy worldwide in 1998. Electron Microsc. 1, 275 (1998).Google Scholar
4King, W.E., Merkle, K.L. and Meshii, M.: Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope. Phys. Rev. B: Condens. Matter 23, 6319 (1981).CrossRefGoogle Scholar
5Hojou, K., Furuno, S., Ohtsu, H., Izui, K. and Tsukamoto, T.: In situ observation system of the dynamic process of structural changes during ion irradiation and its application to SiC and TiC crystals. J. Nucl. Mater. 155–157, 298 (1988).CrossRefGoogle Scholar
6Ruault, M-O., Lerme, M., Jouffrey, B. and Chaumont, J.: Adaptation of an ion implanter on a 100 kV electron microscope for in situ irradiation experiments. J. Phys. E: Sci. Instrum. 11, 1125 (1979).CrossRefGoogle Scholar
7Ruault, M-O., Chaumont, J. and Bernas, H.: Transmission-electron-microscopy study of ion implantation induced Si amorphization: Material modifications under ion irradiation; JANNUS project. Nucl. Instrum. Methods Phys. Res., Sect. B 209/210, 351 (1983).CrossRefGoogle Scholar
8Taylor, A., Allen, C.W. and Ryan, E.A.: The HVEM-Tandem accelerator facility at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res., Sect. B 24/25, 598 (1987).CrossRefGoogle Scholar
9Allen, C.W., Funk, L.L.., Ryan, E.A. and Ockers, S.T.: The HVEM-tandem accelerator facility at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res., Sect. B 40/41, 553 (1989).CrossRefGoogle Scholar
10Allen, C.W.: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56, 200 (1994).CrossRefGoogle Scholar
11Ishino, S.: Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation. J. Nucl. Mater. 206, 139 (1993).CrossRefGoogle Scholar
12Allen, C.W., Ohnuki, S. and Takahaski, H.: Facilities for in situ ion beam studies in transmission electron microscopes. Trans. Mater. Res. Soc. Jpn. 17, 93 (1994).Google Scholar
13Ishino, S., Kawanishi, H., Fukuya, K. and Muroga, T.: In situ studies of the effects of ion beams on materials using the electron microscope ion beam interface. IEEE Trans. Nucl. Sci. NS. 30(2), 1255 (1983).CrossRefGoogle Scholar
14Takeyama, T., Ohnuki, S. and Takahasi, H.: Study of cavity formation in 316 stainless steels by means of HVEM/ ion-accelerator dual irradiation. J. Nucl. Mater. 133–134, 571 (1985).CrossRefGoogle Scholar
15Furuya, K., Piao, M., Ishikawa, N. and Saito, T.: High resolution transmission electron microscopy of defect clusters in aluminum during electron and ion irradiation at room temperature, in Microstructure Evolution During Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and de la Rubia, T. Diaz (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997) p. 331.Google Scholar
16Furuya, K., Mitsuishi, K., Song, M. and Saito, T.: In-situ, analytical, high-voltage and high resolution transmission electron microscopy of Xe ion implantation into Al. J. Electron Microsc. 48, 511 (1999).CrossRefGoogle Scholar
17Hu, B., Kinoshita, H., Shibayama, T. and Takahaski, H.: Effects of helium on radiation behavior in low activation Fe-Cr-Mn alloys. Mater. Trans., JIM 43, 622 (2002).Google Scholar
18Hojou, K., Furuno, S., Ohtsu, H., Izui, K. and Tsukamoto, T.: In-situ observation system of the dynamic process of structual changes during ion irradiation and its application to SiC and TiC crystals. J. Nucl. Mater. 155–157, 298 (1988).CrossRefGoogle Scholar
19Furuya, K., Saito, T., Yamada, I. and Hata, T.: In situ microlithography of Si and GaAs by a focused ion beam in a 200 keV TEM. J. Electron Microsc. 45, 291 (1996).CrossRefGoogle Scholar
20Tanaka, M., Furuya, K. and Saito, T.: Focused ion beam interfaced with a 200 keV transmission electron microscope for in situ micropatterning on semiconductors. Microsc. Microanal. 4, 207 (1998).CrossRefGoogle ScholarPubMed
21Serruys, Y., Ruault, M-O., Trocellier, P., Henry, S., Kaïtasov, O., and Trouslard, Ph.: Material modifications under ion irradiation: JANNUS project. Presented at the 22nd Summer School and International Symposium the Physics of Ionized Gases, AIP Conference Proceedings, 740(1), p. 164 (2004).Google Scholar
22Takeda, S. and Kamino, T.: Agglomeration of self-interstitials in Si observed at 450 C by high-resolution transmission electron microscopy. Phys. Rev. B: Condens. Matter 51(4), 2148 (1995).CrossRefGoogle Scholar
23Eaglesham, D.J., Stolk, P.A., Gossmann, H-J. and Poate, J.M.: Implantation and transient B diffusion in Si: The source of the interstitials. Appl. Phys. Lett. 65(18), 2305 (1994).CrossRefGoogle Scholar
24Yamasaki, J., Takeda, S. and Tsuda, K.: Elemental process of amorphization induced by electron irradiation in Si. Phys. Rev. B: Condens. Matter 65, 115213 (2002).CrossRefGoogle Scholar
25Seidman, D.N., Averback, R.S., Okamoto, P.R. and Baily, A.C.: Amorphization processes in electron- and/or ion-irradiated silicon. Phys. Rev. Lett. 58, 900 (1987).CrossRefGoogle ScholarPubMed
26Jencic, I., Bench, M.W., Robertson, I.M. and Kirk, M.A.: Electron beam induced crystallization of isolated amorphous regions in Si, Ge, GaP and GaAs. J. Appl. Phys. 78, 974 (1995).CrossRefGoogle Scholar
27Ishikawa, N., Furuya, K., Awaji, M., Birtcher, R.C. and Allen, C.W.: HRTEM analysis of Xe precipitates in Al. Nucl. Instrum. Methods Phys. Res., Sect. B 127/128, 123 (1997).CrossRefGoogle Scholar
28Allen, C.W., Birtcher, R.C., Donnelly, S.E., Furuya, K., Ishikawa, N. and Song, M.: Migration and coalescence of Xe nanoprecipitates in Al induced by electron irradiation. Appl. Phys. Lett. 74, 2611 (1999).CrossRefGoogle Scholar
29Birtcher, R.C., Donnelly, S.E., Song, M., Furuya, K., Mitsuishi, K. and Allen, C.W.: Coalescence of solid Xe precipitates in Al. Phys. Rev. Lett. 83, 1617 (1999).CrossRefGoogle Scholar
30Black, T.J., Jenkins, M.L., English, C.A. and Kirk, M.A.: Displacement cascade collapse at low temperatures in Cu3Au. Proc. R. Soc. London, Ser. A 409, 177 (1987).Google Scholar
31Vetrano, J.S., Robertson, I.M. and Kirk, M.A.: Effect of dilute additions on loop formation from heavy-ion produced displacement cascades in Ni. Philos. Mag. A. 68, 381 (1993).CrossRefGoogle Scholar
32Robertson, I.M., Kirk, M.A. and King, W.E.: Formation of dislocation loops in iron by self-ion irradiations at 40K. Scripta Met. 18, 317 (1984).CrossRefGoogle Scholar
33Tappin, D.K., Robertson, I.M. and Kirk, M.A.: The role of electron-phonon coupling in the formation of clustered vacancy defects in elemental metals from heavy-ion irradiation. Philos. Mag. A. 70, 463 (1994).CrossRefGoogle Scholar
34Bacon, D.J., Calder, A.F., Gao, F., Kapinos, V.G. and Wooding, S.J.: Computer simulation of defect production by displacement cascades in metals. Nucl. Instrum. Methods B102, 37 (1995).CrossRefGoogle Scholar
35Kirk, M.A., Jenkins, M.L. and Fukushima, H.: The search for interstitial dislocation loops produced in displacement cascades at 20 K in copper. J. Nucl. Mater. 276, 50 (2000).CrossRefGoogle Scholar
36Jenkins, M.L., Kirk, M.A. and Fukushima, H.: On the application of the weak-beam technique to the determination of the sizes of small point-defect clusters in ion-irradiated copper. J. Electron Microsc. 48, 323 (1999).CrossRefGoogle Scholar
37Daulton, T.L., Kirk, M.A. and Rehn, L.E.: In-situ transmission-electron-microscopy study of ion-irradiated copper: Temperature dependence of defect yield and cascade collapse. Philos. Mag. A. 80, 809 (2000).CrossRefGoogle Scholar
38Kirk, M.A., Robertson, I.M., Vetrano, J.S., Jenkins, M.L. and Funk, L.L.: The collapse of defect cascades to dislocation loops during self-ion irradiations of iron, nickel and copper at 30, 300, and 600 K. ASTM Spec. Tech. Publ. 955, 48 (1987).Google Scholar
39Merkle, K.L. and Jäger, W.: Direct observation of spike effects in heavy ion sputtering. Philos. Mag. A 44, 741 (1981).CrossRefGoogle Scholar
40Birtcher, R.C. and Donnelly, S.E.: Plastic flow induced by single ion impacts on gold. Phys. Rev. Lett. 77, 4374 (1996).CrossRefGoogle ScholarPubMed
41Donnelly, S.E. and Birtcher, R.C.: Heavy ion cratering of gold. Phys. Rev. B 56 B1 13599 (1997).CrossRefGoogle Scholar
42Donnelly, S.E. and Birtcher, R.C.: Ion-induced spike effects on metal surfaces. Philos. Mag. A. 79, 133 (1999).CrossRefGoogle Scholar
43Birtcher, R.C. and Donnelly, S.E.: Plastic flow in FCC metals induced by single-ion impacts. Mater. Chem. Phys. 54(1–3), 111 (1998).CrossRefGoogle Scholar
44Birtcher, R.C. and Donnelly, S.E.: Sputtering of Au induced by single Xe ion impacts, in Fundamental Mechanisms of Low-Energy-Beam-Modified Surface Growth and Processing, edited by Moss, S.C., Chason, E.H., Cooper, B.H., Harper, J.M.E., de la Rubia, T. Diaz, and Murty, M.V.R. (Mater. Res. Soc. Symp. Proc. 585, Warrendale, PA, 2000) p. 117.Google Scholar
45Birtcher, R.C., Donnelly, S.E. and Schlutig, S.: Nanoparticle ejection from Au induced by single ion impacts. Phys. Rev. Lett. 85, 4968 (2000).CrossRefGoogle Scholar
46Birtcher, R.C., Donnelly, S.E. and Schlutig, S.: Nanoparticle ejection during ion irradiation of gold. Nucl. Instrum. Methods Phys. Res., Sect. B 215, 69 (2004).CrossRefGoogle Scholar
47Rehn, L.E., Birtcher, R.C., Donnelly, S.E., Baldo, P.M. and Funk, L.: Origin of atomic clusters during ion sputtering. Phys. Rev. Lett. 87, 207601 (2001).CrossRefGoogle ScholarPubMed
48Bitensky, I.S. and Parilis, E.S.: Shock wave mechanism for cluster emission and organic molecule desorption under heavy ion bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 21, 26 (1987).CrossRefGoogle Scholar
49Ronchi, J.: The nature of surface fission tracks in UO2. J. Appl. Phys. 44, 3575 (1973).CrossRefGoogle Scholar
50Nordlund, K., Keinonen, J., Ghaly, M. and Averback, R.S.: Recoils, flows and explosions: surface damage mechanisms in metals and semiconductors during 50 eV-50 keV ion bombardment. Nucl. Instrum. Methods Phys. Res. B 148, 74 (1999).CrossRefGoogle Scholar
51Staudt, C., Heinrich, R. and Wucher, A.: Formation of large clusters during sputtering of silver. Nucl. Instrum. Methods Phys. Res. B 164–165, 677 (2000).CrossRefGoogle Scholar
52Urbassek, H.M.: Sputtered cluster mass distributions, thermodynamic equilibrium and critical phenomena. Nucl. Instrum. Methods Phys. Res. B 31, 541 (1988).CrossRefGoogle Scholar
53Okamoto, P.R., Lam, N.Q. and Rehn, L.E. Physics of crystalto-glass transformations, in Solid State Physics: Advances in Research and Applications, Vol. 52, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, New York, NY, 1999) pp. 1135.Google Scholar
54Okamoto, P.R., Rehn, L.E., Pearson, J., Bhadra, R. and Grimsditch, M.: Brillouin scattering and transmission electron microscopy studies of radiation-induced elastic softening, disordering and amorphization of intermetallic compounds. J. Less-Common Met. 140, 231 (1988).CrossRefGoogle Scholar
55Allen, C.W., Birtcher, R.C., Rehn, L.E. and Hofman, G.L.: An ion–beam simulation of the swelling of U3Si, in Fundamental of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M.J., Rehn, L.E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988) p. 237.Google Scholar
56Birtcher, R.C., Allen, C.W., Rehn, L.E. and Hofman, G.L.: A simulation of the swelling of intermetallic reactor fuels. J. Nucl. Mater. 152, 73 (1988).CrossRefGoogle Scholar
57Birtcher, R.C., Allen, C.W., Hofman, G.L. and Rehn, L.E. In situ high voltage electron microscopy investigation of catastrophic swelling in uranium intermetallic fuels, in 14th International Symposium on Effects of Irradiation on Materials, Andover, MA 1988, edited by Packan, N.H., Stoller, R.E., and Kumar, A.S. (ASTM, Philadelphia, PA, 1990) p. 782.Google Scholar
58Wang, L.M. and Birtcher, R.C.: Radiation-induced formation of cavities in amorphous germanium. Appl. Phys. Lett. 55, 2494 (1989).CrossRefGoogle Scholar
59Wang, L.M. and Birtcher, R.C.: Amorphization, morphological instability and crystallization of krypton irradiated germanium. Philos. Mag. A. 64, 1209 (1991).CrossRefGoogle Scholar
60Wang, S.X., Wang, L.M. and Ewing, R.C.: Irradiation-induced amorphization: Effects of temperature, ion mass, cascade size, and dose rate. Phys. Rev. B: Condens. Matter 63, 024105 (2000).CrossRefGoogle Scholar
61Lumpkin, G.R., Whittle, K.R., Rios, S., Smith, K.L. and Zaluzec, N.J.: Temperature dependence of ion irradiation damage in the pyrochlores La2Zr2O7 and La2Hf2O7. J. Phys.: Condens. Matter 16, 8557 (2004).Google Scholar
62Smith, K.L., Zaluzec, N.J. and Lumpkin, G.R.: In situ studies of ion irradiated zirconolite, pyrochlore and perovskite. J. Nucl. Mater. 250, 36 (1997).CrossRefGoogle Scholar
63Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S. and Lumpkin, G.R.: Ion irradiation-induced phase transformation of pyrochlore and zirconolite. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 704 (1999).CrossRefGoogle Scholar
64Wang, S.X., Wang, L.M., Ewing, R.C. and Kutty, K.V. Govindan Ion irradiation effects for two pyrochlore compositions: Gd2Ti2O7 and Gd2Zr2O7, in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 355.Google Scholar
65Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J. and Kutty, K.V. Govindan: Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999).CrossRefGoogle Scholar
66Wang, S.X., Wang, L.M., Ewing, R.C. and Kutty, K.V. Govindan: Ion irradiation of reare-earth- and yttrium-titanate-pyrochlores. Nucl. Instrum. Methods Phys. Res., Sect. B 169, 135 (2000).CrossRefGoogle Scholar
67Begg, B.D., Hess, N.J., Weber, W.J., Devanathan, R., Icenhower, J.P., Thevuthasan, S. and McGrail, B.P.: Heavy-ion irradiation effects on structures and acid dissolution of pyrochlores. J. Nucl. Mater. 288, 208 (2001).CrossRefGoogle Scholar
68Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M. and Ewing, R.C.: Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B: Condens. Matter. 66, 054108 (2002).CrossRefGoogle Scholar
69Lian, J., Chen, J., Wang, L.M., Ewing, R.C., Farmer, J.M., Boatner, L.A. and Helean, K.B.: Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys. Rev. B: Condens. Matter 68, 134107 (2003).CrossRefGoogle Scholar
70Lian, J., Wang, L.M., Haire, R.G., Helean, K.B. and Ewing, R.C.: Ion beam irradiation in La2Zr2O7-Ce2Zr2O7 pyrochlore. Nucl. Instrum. Methods Phys. Res., Sect. B 218, 236 (2004).CrossRefGoogle Scholar
71Lian, J., Ewing, R.C., Wang, L.M. and Helean, K.B.: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19, 1575 (2004).CrossRefGoogle Scholar
72Ewing, R.C., Weber, W.J. and Lian, J.: Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinnides. J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
73Wang, S.X., Wang, L.M. and Ewing, R.C.: Nano-scale glass formation in pyrochlore by heavy ion irradiation. J. Non-Cryst. Solids 274, 238 (2000).CrossRefGoogle Scholar
74Lumpkin, G.R., Smith, K.L. and Blackford, M.G.: Heavy ion irradiation studies of columbite, brannerite, and pyrochlore structure types. J. Nucl. Mater. 289, 177 (2001).CrossRefGoogle Scholar
75Heremans, C., Weunsch, B.J., Stalick, J.K. and Prince, E.: Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores: Neutron rietveld analysis of disorder induced by Zr substitution. J. Solid State Chem. 117, 108 (1995).CrossRefGoogle Scholar
76Ewing, R.C. and Wang, L.M.: Amorphization of zirconolite: Alpha-decay event damage versus krypton ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 319 (1992).CrossRefGoogle Scholar
77Wang, S.X., Lumpkin, G.R., Wang, L.M. and Ewing, R.C.: Ion irradiation-induced amorphization of six zirconolite compositions. Nucl. Instrum. Methods Phys. Res., Sect. B 166 (167), 293 (2000).CrossRefGoogle Scholar
78Smith, K.L., Blackford, M.G., Lumpkin, G.R. and Zaluzec, N.J. Temperature dependence of ion irradiation induced amorphisation of zirconolite, in Scientific Basis for Nuclear Waste Management XXIII, edited by Smith, R.W. and Shoesmith, D.W. (Mater. Res. Soc. Symp. Proc. 608, Warrendale, PA, 2000) p. 487.Google Scholar
79Wang, L.M., Wu, A.Y. and Ewing, R.C. Amorphization of PLZT material by 1.5 MeV krypton ion irradiation with in situ TEM observation, in Materials Modification by Energetic Atoms and Ions, edited by Grabowski, K.S., Barnett, S.A., Rossnagel, S.M., and Wasa, K. (Mater. Res. Soc. Symp. Proc. 268, Pittsburgh, PA, 1992) p. 343.Google Scholar
80Meldrum, A., Boatner, L.A. and Ewing, R.C.: Effects of ionizing and displacive irradiation on several perovskite-structure oxides. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 347 (1998).CrossRefGoogle Scholar
81Meldrum, A., Boatner, L.A., Weber, W.J. and Ewing, R.C.: Amorphization and recrystallization of the ABO3 oxides. J. Nucl. Mater. 300, 242 (2002).CrossRefGoogle Scholar
82Smith, K.L., Lumpkin, G.R., Blackford, M.G. and Vance, E.R. Amorphization of perovskite: The effect of composition and pre-existing cation vacancies, in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 323.Google Scholar
83Meldrum, A., Boatner, L.A., Wang, L.M. and Ewing, R.C.: Ion-beam-induced amorphization of LaPO4 and ScPO4. Nucl. Instrum. Methods Phys. Res., Sect. B 127(128), 160 (1997).CrossRefGoogle Scholar
84Meldrum, A., Boatner, L.A. and Ewing, R.C.: Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Phys. Rev. B: Condens. Matter 56, 13805 (1997).CrossRefGoogle Scholar
85Meldrum, A., Zinkle, S.J., Boatner, L.A. and Ewing, R.C.: Heavy-ion irradiation effects in the ABO4 orthosilicates: Decomposition, amorphization, and recrystallization. Phys. Rev. B: Condens. Matter 59, 3981 (1999).CrossRefGoogle Scholar
86Weber, W.J., Devanathan, R., Meldrum, A., Boatner, L.A., Ewing, R.C. and Wang, L.M.: The effect of temperature and damage energy on amorphization in zircon, in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 367.Google Scholar
87Meldrum, A., Zinkle, S.J., Boatner, L.A. and Ewing, R.C.: A transient liquid-like phase in the desplacement cascades of zircon, hafnon and thorite. Nature 395, 56 (1998).CrossRefGoogle Scholar
88Eby, R.K., Ewing, R.C. and Birtcher, R.C.: The amorphization of complex silicates by ion-beam irradiation. J. Mater. Res. 7, 3080 (1992).CrossRefGoogle Scholar
89Wang, S.X., Wang, L.M. and Ewing, R.C.: Amorphization of Al2SiO5 polymorphs under ion beam irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 127(128), 186 (1997).CrossRefGoogle Scholar
90Wang, S.X., Wang, L.M., Ewing, R.C. and Doremus, R.H.: Ion beam-induced amorphization in MgO-Al2O3-SiO2. I. Experimental and theoretical basis. J. Non-Cryst. Solids 238, 198 (1998).CrossRefGoogle Scholar
91Wang, L.M., Gong, W.L., Wang, S.X. and Ewing, R.C.: Comparison of ion-beam irradiation effects in X2YO4 compounds. J. Am. Ceram. Soc. 82, 3321 (1999).CrossRefGoogle Scholar
92Wang, S.X., Wang, L.M., Ewing, R.C. and Doremus, R.H.: Ion beam-induced amorphization in MgO-Al2O3-SiO2: II. Empirical model. J. Non-Cryst. Solids 238, 214 (1998).CrossRefGoogle Scholar
93Wang, L.M., Wang, S.X., Gong, W.L. and Ewing, R.C.: Temperature dependence of Kr ion-induced amorphization of mica minerals. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 501 (1998).CrossRefGoogle Scholar
94Weber, W.J. and Wang, L.M.: Effect of temperature and recoil energy spectra on irradiation-induced amorphization in Ca2La8(SiO4) 6O2. Nucl. Instrum. Methods Phys. Res., Sect. B 91, 63 (1994).CrossRefGoogle Scholar
95Utsunomiya, S., Yudintsev, S., Wang, L.M. and Ewing, R.C.: Ion-beam and electron-beam irradiation of synthetic britholite. J. Nucl. Mater. 322, 180 (2003).CrossRefGoogle Scholar
96Utsunomiya, S., Wang, L.M., Yudintsev, S. and Ewing, R.C.: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).CrossRefGoogle Scholar
97Hishinuma, A., Nakata, K., Fukai, K., Ameyama, K. and Tokizane, M.: Microstructural development by electron irradiation in mechanical alloying processed Ti-Al intermetallic compounds. J. Nucl. Mater. 199, 167 (1993).CrossRefGoogle Scholar
98Nanata, K., Fukai, K., Hishinuma, A., Ameyama, K. and Tokizne, M.: Dislocation loop and cavity formation under He-ion irradiation in a Ti-rich TiAl intermetallic compound. J. Nucl. Mater. 202, 39 (1993).Google Scholar
99Hishinuma, A.: Radiation damage of TiAl intermetallic alloys. J. Nucl. Mater. 239, 267 (1996).CrossRefGoogle Scholar
100Nakata, K., Fukai, K., Hishinuma, A. and Ameyama, K.: Formation and annealing behavior of defect clusters in electron or He-ion irradiated Ti-rich Ti,ÄìAl alloys. J. Nucl. Mater. 240, 221 (1997).CrossRefGoogle Scholar
101Song, M., Furuya, K., Tanabe, T. and Noda, T.: High-resolution electron microscopy of -TiAl irradiated with 15 keV helium ions at room temperature. J. Nucl. Mater. 271–272, 200 (1999).CrossRefGoogle Scholar
102Song, M., Furuya, K., Tanabe, T. and Noda, T.: High-resolution electron microscopy study of defect structures in -TiAl irradiated with 15 keV He ions in a high-voltage transmission electron microscope. J. Electron Microsc. 48, 355 (1999).CrossRefGoogle Scholar
103Jaouen, C., Denanot, M.F. and Riviere, M.F.: In situ study of ion induced amorphization at low temperature in Al3Ti. Nucl. Instrum. Methods Phys. Res., Sect. B 80, 386 (1993).CrossRefGoogle Scholar
104Song, M., Mitsuishi, K., Takeguchi, M., Furuya, K., Tanabe, T. and Noda, T.: Structure of a phase induced with Xe-ion irradiationimplantation in gamma-TiAl. Philos. Mag. Lett. 80, 661 (2000).CrossRefGoogle Scholar
105Song, M., Mitsuishi, K., Takeguchi, M., Furuya, K., Tanabe, T. and Noda, T.: Phase transformation in the -TiAl alloy induced by Ar ions. J. Nucl. Mater. 307–311, 971 (2002).CrossRefGoogle Scholar
106Johnson, E., Wohlenberg, T. and Grant, W.A.: Crystalline phase transitions produced by ion implantation. Phase Transitions 1, 23 (1979).CrossRefGoogle Scholar
107Johnson, E., Wohlenberg, T., Grant, W.A., Hansen, P. and Chadderton, L.T.: Ion-induced phase transformation in type 304 austenitic stainless steel by rare-gas ion irradiation. J. Microsc. 116, 77 (1979).CrossRefGoogle Scholar
108Johnson, E., Littmark, U., Johansen, A. and Christodoulides, C.: Martensite transformation in antimony implanted stainless steel. Philos. Mag. A. 45, 803 (1982).CrossRefGoogle Scholar
109Johnson, E., Johansen, A., Sarholt-Kristensen, L., Gråbæk, L., Hayashi, N. and Sakamoto, I.: Mössbauer and TEM study of martensitic transformations in ion implanted 17/7 stainless steel. Nucl. Instrum. Methods Phys. Res., Sect. B 19/20, 171 (1987).CrossRefGoogle Scholar
110Hayashi, N. and Takahashi, T.: Irradiation-induced phase transformation in type 304 stainless steel. Appl. Phys. Lett. 41, 1100 (1982).CrossRefGoogle Scholar
111Hayashi, N., Sakamoto, I. and Takahashi, T.: Phase transformation in helium ion irradiated 316 stainless steel. J. Nucl. Mater. 128/129, 756 (1984).CrossRefGoogle Scholar
112Sakamoto, I., Hayashi, N., Furubayashi, B. and Tanoue, H.: Ion-induced phase transformation in type 304 austenitic stainless steel by rare-gas ion irradiation. J. Appl. Phys. 68, 4508 (1990).CrossRefGoogle Scholar
113Xie, G., Song, M., Mitsuishi, K. and Furuya, K.: Orientation of to transformation in Xe-implanted austenitic 304 stainless steel. J. Nucl. Mater. 281, 80 (2000).CrossRefGoogle Scholar
114Johnson, E.: Martensitic transformation in ion implanted stainless steel, in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J.A., Børgesen, P., Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157 Pittsburgh, PA, 1990) p. 759.Google Scholar
115Johnson, E., Gerritsen, E., Chechenin, N.G., Johansen, A., Sarholt-Kristensen, L., Keetels, H.A.A., Gråbæk, L. and Bohr, J.: Depth distribution analysis of Martensitic transformations in Xe implanted austenitic stainless steel. Nucl. Instrum. Methods Phys. Res., Sect. B 39, 573 (1989).CrossRefGoogle Scholar
116Johansen, A., Johnson, E., Sarholt-Kristensen, L., Steenstrup, S., Gerritsen, E., Denissen, C.J.M., Keetels, H., Politiek, J., Hayashi, N. and Sakamoto, I.: Martensitic transformation and the stress induced by 3 MeV ion implantation in an austenite stainless steel sheet. Nucl. Instrum. Methods Phys. Res., Sect. B 50, 119 (1990).CrossRefGoogle Scholar
117Allen, C.W.: Irradiation-induced grain growth in gold and copper: In situ HVEM studies at 75–300K, in Proceedings of 47th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G.W. (San Francisco Press Inc., San Francisco, CA, 1989) pp. 644645.Google Scholar
118Alexander, D.E., Was, G.S. and Rehn, L.E.: The heat-of-mixing effect on ion-induced grain growth. J. Appl. Phys. 70, 1252 (1991).CrossRefGoogle Scholar
119Motta, A.T., Paesano, A. Jr., Birtcher, R.C. and Amaral, L.: Grain growth in Zr-Fe multilayers under in-situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 175/177, 521 (2001).CrossRefGoogle Scholar
120Birtcher, R.C., Donnelly, S.E., Rehn, L.E. and Thomé, L.: Nanocluster formation during ion irradiation of SiO2/Ag/SiO2 multilayers. Nucl. Instrum. Methods Phys. Res., Sect. B 175/177, 40 (2001).CrossRefGoogle Scholar
121Sagaradze, V.V., Lapin, S.S., Kirk, M.A. and Goshchitskii, B.N.: Influence of high-dose Kr+ irradiation on structural evolution and swelling of 16Cr-15Ni-3Mo-1Ti aging steel. J. Nucl. Mater. 274, 287 (1999).CrossRefGoogle Scholar
122Allen, C.W., McCormick, A.W., Kestel, B.J., Baldo, P.M., Zaluzec, N.J. and Rehn, E.L.: Fabrication of a simple materials system for study of Hg in a stainless steel, in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999) p. 561.Google Scholar
123Birtcher, R.C., Donnelly, S.E. and Templier, C.: Evolution of helium bubbles in aluminum during heavy ion irradiation. Phys. Rev. B: Condens. Matter 50, 764 (1994).CrossRefGoogle ScholarPubMed
124Donnelly, S.E., Birtcher, R.C., Templier, C. and Vishnyakov, V.: Response of helium bubbles in gold to displacement cascade damage. Phys. Rev. B 52, 3970 (1995).CrossRefGoogle ScholarPubMed
125Ziegler, J.F., Biersack, J.P. and Littmark, U.: The Stopping and Ranges of Ions in Solids (Pergamon Press, New York, NY, 1985).Google Scholar
126Ono, K., Arakawa, K., and Birtcher, R.C.: In situ observation of brownian motion and dynamical response to irradiation of helium bubbles in aluminum and copper, in Proc. 2003 TMS Annual Meeting: Electron Microscopy; Its Role In Materials Science, edited by Weertman, J.R., Fine, M., Faber, K., King, W., and Liaw, P., San Diego, CA, 2003; p. 347.Google Scholar
127Follstaedt, D.M., Myers, S.M., Petersen, G.A. and Medernach, J.W.: Cavity formation and impurity gettering in He-implanted Si. J. Electron. Mater. 25, 151 (1996).CrossRefGoogle Scholar
128Wong-Leung, J., Williams, J.S., Kinomura, A., Nakano, Y., Hayashi, Y. and Eaglesham, D.J.: Diffusion and transient trapping of metals in silicon. Phys. Rev. B: Condens. Matter 59, 7990 (1999).CrossRefGoogle Scholar
129Raineri, V. and Campisano, U.: Voids in silicon as sink for interstitials. Nucl. Instrum. Methods Phys. Res., Sect. B 120, 56 (1996).CrossRefGoogle Scholar
130Williams, J.S., Zhu, X.F., Ridgway, M.C., Conway, M.J., Williams, B.C., Fortuna, F., Ruault, M-O. and Bernas, H.: Preferential amorphization and defect annihilation at nanocavities in silicon during ion irradiation. Appl. Phys. Lett. 77, 4286 (2000).CrossRefGoogle Scholar
131Ruault, M-O., Ridgway, M.C., Fortuna, F., Bernas, H. and Williams, J.S.: Shrinkage mechanism of nanocavities in amorphous Si under ion irradiation: An in situ study. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 912 (2003).CrossRefGoogle Scholar