Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:19:23.718Z Has data issue: false hasContentIssue false

In situ Tensile Testing of Nanoscale Freestanding Thin Films Inside a Transmission Electron Microscope

Published online by Cambridge University Press:  01 July 2005

M.A. Haque*
Affiliation:
Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
M.T.A. Saif
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The unique capability of rendering opaque specimens transparent with atomic resolution makes transmission electron microscopy (TEM) an indispensable toolfor microstructural and crystallographic analysis of materials. Conventional TEM specimens are placed on grids about 3 mm in diameter and 10–100 μm thick. Such stringent size restriction has precluded mechanical testing inside the TEM chamber.So far, in situ testing of nanoscale thin foils has been mostly qualitative. Micro-electro-mechanical systems (MEMS) offer an unprecedented level of miniaturization to realize sensors and actuators that can add TEM visualization to nano-mechanical characterization. We present a MEMS-based uniaxial tensile experiment setup that integrates nanoscale freestanding specimens with force and displacement sensors, which can be accommodated by a conventional TEM straining stage. In situ TEM testing on 100-nm-thick freestanding aluminum specimens (with simultaneous stress measurement) show limited dislocation activity in the grain interior and consequent brittle mode of fracture. Plasticity at this size scale is contributed by grain boundary dislocations and partial dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Newbury, D.E. and Williams, D.B.: The electron microscope: The materials characterization tool of the millenium. Acta Mater. 48, 323 (2000).CrossRefGoogle Scholar
2Couret, A., Crestou, J., Farenc, S., Molénat, G., Clément, N., Coujou, A. and Caillard, D.: In situ deformation in TEM: Recent developments. Microsc. Microanal. Microstruct. 4, 153 (1993).CrossRefGoogle Scholar
3Robertson, I.M., Lee, T.C. and Birnbaum, H.K.: Application of in-situ TEM deformation technique to observe how ‘clean’ and doped grain boundaries respond to local stress concentrations. Ultramicroscopy 40, 330 (1992).CrossRefGoogle Scholar
4Messerschmidt, U.: In situ straining experiments in the transmission electron microscope J. Phys. 3, 2123 (1993).Google Scholar
5Messerschmidt, U. and Bartsch, M.: High-temperature straining stage for in situ experiments in the high-voltage electron microscope Ultramicroscopy 56, 163 (1994).CrossRefGoogle Scholar
6Yeadon, M.: Introduction to in situ electron microscopy in the materials sciences. Microsc. Res. Tech. 42, 239 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
7Messerschmidt, U. and Appel, F.: Quantitative tensile-tilting stages for the high voltage electron microscope. Ultramicroscopy 1, 223 (1976).CrossRefGoogle ScholarPubMed
8Robach, J.S., Robertson, I.M., Wirth, B.D. and Arsenlis, A.: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation–defect interactions in ion-irradiated copper. Philos. Mag. 83, 955 (2003).CrossRefGoogle Scholar
9Louchet, F., Doisneau-Cottignies, B., Calonne, O., Fraczkiewicz, A., Janecek, M. and Guelton, N.: Is plastic flow always controlled by dislocation mobility? An answer from in situ transmission electron microscopy straining tests. J. Microsc. 203, 84 (2001).CrossRefGoogle ScholarPubMed
10Pettinari, F., Couret, A., Caillard, D., Molénat, G., Clément, N. and Coujou, A.: Quantitative measurements in in situ straining experiments in transmission electron microscopy. J. Microsc. 203, 47 (2001).CrossRefGoogle ScholarPubMed
11Werner, M., Bartsch, M., Messerschmidt, U. and Baither, D.: TEM observations of dislocation motion in polycrystalline silicon during in situ straining in the high voltage electron microscope. Phys. Status Solidi A 146, 133 (1994).CrossRefGoogle Scholar
12McCabe, R.J., Misra, A., and Mitchell, T.E.: Study of dislocations in copper by weak beam, stereo, and in situ straining TEM, in Electron Microscopy: Its Role in Materials Science, The Mike Meshii Symposium J.R. Weertman, M. Fine, K. Faber, W. King, and P. Liaw (TMS Annual Meeting, 2003), pp. 2531.Google Scholar
13Teter, D.F., Robertson, I.M. and Birnbaum, H.K.: The effects of hydrogen on the deformation and fracture of [beta]-titanium. Acta Mater. 49, 4313 (2001).CrossRefGoogle Scholar
14Xu, Y. and Schulson, E.M.: Dislocation-grain boundary interactions in Ni3Ga with and without boron: In situ TEM deformation. Scripta Mater. 33, 931 (1995).CrossRefGoogle Scholar
15Haeussler, D., Messerschmidt, U., Bartsch, M., Appel, F. and Wagner, R.: In situ high-voltage electron microscope deformation study of a two-phase (2+) Ti–Al alloy. Mater. Sci. Eng. A233, 15 (1997).CrossRefGoogle Scholar
16Jiang, B., Tsugio, T., Mori, H. and Hsu, T.Y.: In-situ TEM observation of γ-ϵ martensitic transformation during tensile straining in an Fe–Mn–Si shape memory alloy. Mater. Trans., JIM 38, 1072 (1997).CrossRefGoogle Scholar
17Foecke, T. and Kramer, D.E.: In situ TEM observations of fracture in nanolaminated metallic thin films. Int. J. Fracture 119/120, 351 (2003).CrossRefGoogle Scholar
18Hsiung, L.M., Schwartz, A.J. and Nieh, T.G.: In situ TEM observations of interface sliding and migration in a refined lamellar TiAl alloy. Intermetallics 12, 727 (2004).CrossRefGoogle Scholar
19Wang, Z., McCabe, R.J., Ghoniem, N.M., LeSar, R., Misra, A. and Mitchell, T.E.: Dislocation motion in thin Cu foils: A comparison between computer simulations and experiment. Acta Mater. 52, 1535 (2004).CrossRefGoogle Scholar
20Youngdahl, C.J., Weertman, J.R., Hugo, R.C. and Kung, H.H.: Deformation behavior in nanocrystalline copper. Scripta Mater. 44, 1475 (2001).CrossRefGoogle Scholar
21Hugo, R.C., Kung, H., Weertman, J.R., Mitra, R., Knapp, J.A. and Follstaedt, D.M.: In-situ TEM tensile testing of dc magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51, 1937 (2003).CrossRefGoogle Scholar
22Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334, 173 (2002).CrossRefGoogle Scholar
23Wang, Z.L.: New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497 (2003).CrossRefGoogle Scholar
24Koch, C.C. and Narayan, J.: The inverse Hall–Petch effect—Fact or artifact, in Structure and Mechanical Properties of Nanophase Materials—Theory and Computer Simulations vs. Experiment, edited by Farkas, D., Kung, H., Mayo, M., Van Swygenhoven, H., and Weertman, J. (Mater. Res. Soc. Symp. 634, Warrendale, PA, 2001), p. B511.Google Scholar
25Gutkin, M.Y., Ovidko, I.A. and Pande, C.S.: Theoretical models of plastic deformation processes in nano-crystalline materials. Rev. Adv. Mater. Sci. 2, 80 (2001).Google Scholar
26Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular dynamics simulation. Nat. Mater. 3, 43 (2003).CrossRefGoogle ScholarPubMed
27Kumar, K.S., Swygenhoven, H.V. and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
28Saif, M.T.A. and MacDonald, N.C.: Micro instruments for submicron material studies. J. Mater. Res. 13, 3353 (1998).CrossRefGoogle Scholar
29Haque, M.A. and Saif, M.T.A.: Deformation mechanisms in free-standing nano-scale thin films: A quantitative in-situ TEM study. Proc. Natl. Acad. Sci. U.S.A. 101, 6335 (2004).CrossRefGoogle Scholar
30Haque, M.A. and Saif, M.T.A.: A review on micro and nano-mechanical testing with MEMS. Exp. Mech. (Invited) 43, 1 (2003).Google Scholar
31Haque, M.A. and Saif, M.T.A.: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators, A 97–98, 239 (2002).CrossRefGoogle Scholar
32Saif, M.T.A., Zhang, S., Haque, M.A. and Hsia, K.: Effect of native Al2O3 on the elastic modulus of thin Al films. Acta Mater. 50, 2779 (2002).CrossRefGoogle Scholar
33Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
34Gutkin, M.Y., Ovidko, I.A. and Pande, C.S.: Theoretical models of plastic deformation processes in nano-crystalline materials. Rev. Adv. Mat. Sci. 2, 80 (2001).Google Scholar
35Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Sol. 47, 1239 (1999).CrossRefGoogle Scholar
36Eshelby, J.D.: Uniformly moving dislocations. Proc. Phys. Soc. A62, 307 (1949).CrossRefGoogle Scholar
37Nabarro, F.R.: Theory of Crystal Dislocations (Oxford University Press, Oxford, U.K., 1967).Google Scholar
38Kocks, U.F.: The relation between polycrystal deformation and single crystal deformation. Metall. Trans. 1, 1121 (1970).CrossRefGoogle Scholar
39Wang, N., Wang, Z., Aust, K.T. and Erb, U.: Effect of grain size on mechanical properties of nano-crystalline materials. Acta Mater. 43, 519 (1995).CrossRefGoogle Scholar
40Haque, M.A. and Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053 (2003).CrossRefGoogle Scholar
41Haque, M.A. and Saif, M.T.A.Thermo-mechanical properties of nanoscale freestanding aluminum films. Thin Solid Films 484(1–2), 364 (2005).CrossRefGoogle Scholar
42Swygenhoven, H.V.: Plastic deformation in metals with nanosized grains: Atomistic simulations and experiments. Mater. Sci. Forum 447–448, 3 (2004).CrossRefGoogle Scholar
43Schiotz, J., DiTolla, F.F. and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).CrossRefGoogle Scholar
44Czubayko, U., Sursaeva, V.G., Gottstein, G. and Shvindlerman, L.S.: Influence of triple junctions on grain boundary motion. Acta Mater. 46, 5863 (1988).CrossRefGoogle Scholar