Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T09:45:30.788Z Has data issue: false hasContentIssue false

In situ single-step reduction of bromine-intercalated graphite to covalently brominated and alkylated/brominated graphene

Published online by Cambridge University Press:  20 May 2020

Mustafa Kemal Bayazit*
Affiliation:
Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul 34956, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Developing easy and effective surface functionalization approaches has required to facilitate the processability of graphene while seeking novel application areas. Herein, an in situ single-step reductive covalent bromination of graphene has been reported for the first time. Highly brominated graphene flakes (>3% Br) were prepared by only subjecting the bromine-intercalated graphite flakes to a reduction reaction with reactive lithium naphthalide. The bromine-functionalized graphene was characterized by X-ray photoelectron spectroscopy and thermogravimetric analysis. Results revealed that Br2 molecules acted as both an intercalating agent for the graphite and a reactant for the surface functionalization of the graphene. After brominating, the remaining negative charges on the reduced graphene surface were further used for the dual surface functionalization of graphene with a long-chain alkyl group (~1% dodecyl group addition). The functionalized graphenes were also characterized by Fourier transform infrared and Raman spectroscopy.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).10.1073/pnas.0502848102CrossRefGoogle ScholarPubMed
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle ScholarPubMed
Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., and Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611 (2009).CrossRefGoogle ScholarPubMed
Johnson, D.W., Dobson, B.P., and Coleman, K.S.: A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 20, 367 (2015).CrossRefGoogle Scholar
Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O.M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J.N.: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).CrossRefGoogle ScholarPubMed
Parvez, K., Wu, Z-S., Li, R., Liu, X., Graf, R., Feng, X., and Müllen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083 (2014).CrossRefGoogle ScholarPubMed
Hodge, S.A., Bayazit, M.K., Coleman, K.S., and Shaffer, M.S.P.: Unweaving the rainbow: A review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 41, 4409 (2012).CrossRefGoogle ScholarPubMed
Bayazit, M.K. and Coleman, K.S.: Probing the selectivity of azomethine imine cycloaddition to single-walled carbon nanotubes by resonance Raman spectroscopy. Chem. - Asian J. 7, 2925 (2012).CrossRefGoogle ScholarPubMed
Bayazit, M.K. and Tang, J.: Graphene production method WO/2019/110757, UCL Business PLC, UK, 2019. p. 46pp.Google Scholar
Bayazit, M.K. and Coleman, K.S.: Ester-functionalized single-walled carbon nanotubes via addition of haloformates. J. Mater. Sci. 49, 5190 (2014).CrossRefGoogle Scholar
Jombert, A.S., Bayazit, M.K., Herron, C.R., Coleman, K.S., and Zeze, D.A.: Synthesis and characterization of molecularly-bridged single-walled carbon nanotubes and electrical properties of their films. Sci. Adv. Mater. 5, 1967 (2013).CrossRefGoogle Scholar
Bayazit, M.K., Suri, A., and Coleman, K.S.: Formylation of single-walled carbon nanotubes. Carbon 48, 3412 (2010).CrossRefGoogle Scholar
Bayazit, M.K., Clarke, L.S., Coleman, K.S., and Clarke, N.: Pyridine-functionalized single-walled carbon nanotubes as gelators for poly(acrylic acid) hydrogels. J. Am. Chem. Soc. 132, 15814 (2010).CrossRefGoogle ScholarPubMed
Bayazit, M.K. and Coleman, K.S.: Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides. J. Am. Chem. Soc. 131, 10670 (2009).CrossRefGoogle ScholarPubMed
Bottari, G., Herranz, M.Á., Wibmer, L., Volland, M., Rodríguez-Pérez, L., Guldi, D.M., Hirsch, A., Martín, N., D'Souza, F., and Torres, T.: Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 46, 4464 (2017).CrossRefGoogle ScholarPubMed
Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Nandanapalli, K.R., Mudusu, D., and Lee, S.: Functionalization of graphene layers and advancements in device applications. Carbon 152, 954 (2019).CrossRefGoogle Scholar
Lei, Z.B., Zhang, J.T., Zhang, L.L., Kumar, N.A., and Zhao, X.S.: Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ. Sci. 9, 1891 (2016).CrossRefGoogle Scholar
Narita, A., Wang, X.Y., Feng, X.L., and Mullen, K.: New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616 (2015).CrossRefGoogle ScholarPubMed
Greenwood, J., Phan, T.H., Fujita, Y., Li, Z., Lvasenko, O., Vanderlinden, W., Van Gorp, H., Frederickx, W., Lu, G., Tahara, K., Tobe, Y., Uji-i, H., Mertens, S.F.L., and De Feyter, S.: Covalent modification of graphene and graphite using diazonium chemistry: Tunable grafting and nanomanipulation. ACS Nano 9, 5520 (2015).CrossRefGoogle ScholarPubMed
Paulus, G.L.C., Wang, Q.H., and Strano, M.S.: Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 46, 160 (2013).CrossRefGoogle ScholarPubMed
Johns, J.E. and Hersam, M.C.: Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77 (2013).CrossRefGoogle ScholarPubMed
Dai, L.M.: Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31 (2013).CrossRefGoogle ScholarPubMed
Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., and Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061 (2012).CrossRefGoogle Scholar
Niyogi, S., Bekyarova, E., Hong, J., Khizroev, S., Berger, C., de Heer, W., and Haddon, R.C.: Covalent chemistry for graphene electronics. J. Phys. Chem. Lett. 2, 2487 (2011).CrossRefGoogle Scholar
Quintana, M., Spyrou, K., Grzelczak, M., Browne, W.R., Rudolf, P., and Prato, M.: Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4, 3527 (2010).CrossRefGoogle ScholarPubMed
Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., and Haddon, R.C.: Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle ScholarPubMed
Georgakilas, V.: Covalent attachment of organic functional groups on pristine graphene. In Functionalization of Graphene, Georgakilas, V., ed. (Wiley, Germany 2014); p. 21.CrossRefGoogle Scholar
Englert, J.M., Dotzer, C., Yang, G.A., Schmid, M., Papp, C., Gottfried, J.M., Steinruck, H.P., Spiecker, E., Hauke, F., and Hirsch, A.: Covalent bulk functionalization of graphene. Nat. Chem. 3, 279 (2011).CrossRefGoogle ScholarPubMed
Jin, Z., McNicholas, T.P., Shih, C.J., Wang, Q.H., Paulus, G.L.C., Hilmer, A., Shimizu, S., and Strano, M.S.: Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 23, 3362 (2011).CrossRefGoogle Scholar
Koehler, F.M., Jacobsen, A., Ensslin, K., Stampfer, C., and Stark, W.J.: Selective chemical modification of graphene surfaces: Distinction between single- and bilayer graphene. Small 6, 1125 (2010).CrossRefGoogle ScholarPubMed
Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., and Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098 (2009).CrossRefGoogle Scholar
Clancy, A.J., Bayazit, M.K., Hodge, S.A., Skipper, N.T., Howard, C.A., and Shaffer, M.S.P.: Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363 (2018).CrossRefGoogle ScholarPubMed
Pénicaud, A. and Drummond, C.: Deconstructing graphite: Graphenide solutions. Acc. Chem. Res. 46, 129 (2013).CrossRefGoogle ScholarPubMed
Schäfer, R.A., Englert, J.M., Wehrfritz, P., Bauer, W., Hauke, F., Seyller, T., and Hirsch, A.: On the way to graphane—Pronounced fluorescence of polyhydrogenated graphene. Angew. Chem., Int. Ed. 52, 754 (2013).CrossRefGoogle ScholarPubMed
Knirsch, K.C., Englert, J.M., Dotzer, C., Hauke, F., and Hirsch, A.: Screening of the chemical reactivity of three different graphite sources using the formation of reductively alkylated graphene as a model reaction. Chem. Commun. 49, 10811 (2013).CrossRefGoogle ScholarPubMed
Morishita, T., Clancy, A.J., and Shaffer, M.S.P.: Optimised exfoliation conditions enhance isolation and solubility of grafted graphenes from graphite intercalation compounds. J. Mater. Chem. A 2, 15022 (2014).CrossRefGoogle Scholar
Hof, F., Schäfer, R.A., Weiss, C., Hauke, F., and Hirsch, A.: Novel λ3-iodane-based functionalization of synthetic carbon allotropes (SCAs)—Common concepts and quantification of the degree of addition. Chem. Eur J. 20, 16644 (2014).CrossRefGoogle ScholarPubMed
Voiry, D., Roubeau, O., and Pénicaud, A.: Stoichiometric control of single walled carbon nanotubes functionalization. J. Mater. Chem. 20, 4385 (2010).CrossRefGoogle Scholar
Clancy, A.J., Sirisinudomkit, P., Anthony, D.B., Thong, A.Z., Greenfield, J.L., Salaken Singh, M.K., and Shaffer, M.S.P.: Real-time mechanistic study of carbon nanotube anion functionalisation through open circuit voltammetry. Chem. Sci. 10, 3300 (2019).CrossRefGoogle ScholarPubMed
Au, H., Rubio, N., and Shaffer, M.S.P.: Brominated graphene as a versatile precursor for multifunctional grafting. Chem. Sci. 9, 209 (2018).CrossRefGoogle ScholarPubMed
Jankovský, O., Šimek, P., Klimová, K., Sedmidubský, D., Matějková, S., Pumera, M., and Sofer, Z.: Towards graphene bromide: Bromination of graphite oxide. Nanoscale 6, 6065 (2014).CrossRefGoogle ScholarPubMed
Dresselhaus, M.S. and Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51, 1 (2002).CrossRefGoogle Scholar
Eklund, P.C., Kambe, N., Dresselhaus, G., and Dresselhaus, M.S.: In-plane intercalate lattice modes in graphite-bromine using Raman spectroscopy. Phys. Rev. B 18, 7069 (1978).CrossRefGoogle Scholar
Underhill, C., Leung, S.Y., Dresselhaus, G., and Dresselhaus, M.S.: Infrared and Raman spectroscopy of graphite-ferric chloride. Solid State Commun. 29, 769 (1979).CrossRefGoogle Scholar
Xu, J., Dou, Y., Wei, Z., Ma, J., Deng, Y., Li, Y., Liu, H., and Dou, S.: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146 (2017).CrossRefGoogle Scholar
Zou, J., Sole, C., Drewett, N.E., Velický, M., and Hardwick, L.J.: In situ study of Li intercalation into highly crystalline graphitic flakes of varying thicknesses. J. Phys. Chem. Lett. 7, 4291 (2016).CrossRefGoogle ScholarPubMed
Sasa, T., Takahashi, Y., and Mukaibo, T.: Crystal structure of graphite bromine lamellar compounds. Carbon 9, 407 (1971).CrossRefGoogle Scholar
Eeles, W.T., Turnbull, J.A., and Rotherham, L.: The crystal structure of graphite-bromine compounds. Proc. R. Soc. London, Ser. A 283, 179 (1965).Google Scholar
Pekker, S., Salvetat, J.P., Jakab, E., Bonard, J.M., and Forró, L.: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001).CrossRefGoogle Scholar
Nemeth, K., Jakab, E., Borondics, F., Tóháti, H.M., Pekker, Á., Bokor, M., Verebélyi, T., Tompa, K., Pekker, S., and Kamarás, K.: Breakdown of diameter selectivity in a reductive hydrogenation reaction of single-walled carbon nanotubes. Chem. Phys. Lett. 618, 214 (2015).CrossRefGoogle Scholar
Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).CrossRefGoogle ScholarPubMed
Das, G., Park, B.J., Kim, J., Kang, D., and Yoon, H.H.: Quaternized cellulose and graphene oxide crosslinked polyphenylene oxide based anion exchange membrane. Sci. Rep. 9, 9572 (2019).CrossRefGoogle ScholarPubMed
Culik, J.S. and Chung, D.D.L.: Thermal gravimetric analysis of graphite-bromine compounds. Mater. Sci. Eng. 44, 129 (1980).CrossRefGoogle Scholar
Bayazit, M.K., Hodge, S.A., Clancy, A.J., Menzel, R., Chen, S., and Shaffer, M.S.P.: Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids. Chem. Commun. 52, 1934 (2016).CrossRefGoogle ScholarPubMed