Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T09:19:00.698Z Has data issue: false hasContentIssue false

In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect

Published online by Cambridge University Press:  31 January 2011

Yung-Yu Hsu*
Affiliation:
IMEC, Kapeldreef 75, 3001, Leuven, Belgium; and Department of Materials Engineering, K.U. Leuven, Belgium
Mario Gonzalez
Affiliation:
IMEC, Kapeldreef 75, 3001, Leuven, Belgium
Jan Vanfleteren
Affiliation:
IMEC-Centre for Microsystems Technology, Gent-Zwijnaarde, Belgium
Ingrid De Wolf
Affiliation:
IMEC, Kapeldreef 75, 3001, Leuven, Belgium; and Department of Materials Engineering, K.U. Leuven, Belgium
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electronic devices capable of performing in extreme mechanical conditions such as stretching, bending, or twisting will improve biomedical and wearable systems. The required capabilities cannot be achieved with conventional building geometries, because of structural rigidity and lack of mechanical stretchability. In this article, a zigzag-patterned structure representing a stretchable interconnect is presented as a promising type of building block. In situ experimental observations on the deformed interconnect are correlated with numerical analysis, providing an understanding of the deformation and failure mechanisms. The experimental results demonstrate that the zigzag-patterned interconnect enables stretchability up to 60% without rupture. This stretchability is accommodated by in-plane rotation of arms and out-of-plane deformation of crests. Numerical analysis shows that the dominating failure cause is interfacial in-plane shear stress. The plastic strain concentration at the arms close to the crests, obtained by numerical simulation, agrees well with the failure location observed in the experiment.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lumelsky, V.J., Shur, M.S., and Wagner, S.: Sensitive skin. IEEE Sensors J. 1, 41 (2001).CrossRefGoogle Scholar
2.Wagner, S., Bonderover, E., Jordan, W.B., and Sturm, J.C.: Electro-textiles: Concepts and challenges. Int. J. Hielt Speed Electron. Syst. 12, 1 (2002).Google Scholar
3.Jiang, H., Khang, D.Y., Song, J., Sun, Y., Huang, Y., and Rogers, J.A.: Finite deformation mechanics in buckled thin films on compliant supports. Proc. Nat. Acad. Sci. U.S.A. 104(40), 15607 (2007).CrossRefGoogle ScholarPubMed
4.Jiang, H., Sun, Y., Rogers, J.A., and Huang, Y.: Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007).CrossRefGoogle Scholar
5.Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B., Xiao, J., Wang, S., Huang, Y., and Rogers, J.A.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748 (2008).CrossRefGoogle ScholarPubMed
6.Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y.Y., Zhuangjian, L., Chun, L., and Rogers, J.A.: Stretch-able and foldable silicon integrated circuits. Science 320, 507 (2008).CrossRefGoogle ScholarPubMed
7.Ahn, J.H., Kim, H.S., Menard, E., Lee, K.J., Zhu, Z., Kim, D.H., Nuzzo, R.G., Rogers, J.A., Amlani, I., Kushner, V., Thomas, S.G., and Duenas, T.: Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90, 213501 (2007).CrossRefGoogle Scholar
8.Lacour, S.P., Wagner, S., Huang, Z., and Suo, Z.: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82(15), 2404 (2003).CrossRefGoogle Scholar
9.Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., and Suo, Z.: Electronic skin: Architecture and components. Physica E 25, 326 (2004).CrossRefGoogle Scholar
10.Li, T., Huang, Z., Suo, Z., Lacour, S.P., and Wagner, S.: Stretchabil-ity of thin metal films on elastomer substrates. Appl. Phys. Lett. 85(16), 3435 (2004).CrossRefGoogle Scholar
11.Li, T., Suo, Z., Lacour, S.P., and Wagner, S.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20(12), 3274 (2005).CrossRefGoogle Scholar
12.Gray, D.S., Tien, J., and Chen, C.S.: High-conductive elastomeric electronics. Adv. Mater. 16(5), 393 (2004).CrossRefGoogle Scholar
13.Brosteaux, D., Axisa, F., Gonzalez, M., and Vanfleteren, J.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28(7), 552 (2007).CrossRefGoogle Scholar
14.Gonzalez, M., Axisa, F., Vanden Bulcke, M., Brosteaux, D., Vandevelde, B., and Vanfleteren, J.: Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825 (2008).CrossRefGoogle Scholar
15.Hsu, Y.Y., Gonzalez, M., Bossuyt, F., Axisa, F., Vanfleteren, J., and DeWolf, I.: A novel interconnect design with high stretchability and fine pitch capability in applications of stretchable electronics. Mater. Res. Soc. Symp. Proc. (2009).CrossRefGoogle Scholar
16.Chiu, S.L., Leu, J., and Ho, P.S.: Fracture of metal-polymer line structures. I: Semiflexible polyimide. J. Appl. Phys. 76(9), 5136 (1994).CrossRefGoogle Scholar
17.MSC Marc User Manual.Google Scholar