Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T12:33:57.975Z Has data issue: false hasContentIssue false

In situ Growth of Fatigue-free SrBi2Ta2O9 Films by Pulsed Laser Ablation

Published online by Cambridge University Press:  31 January 2011

Hung-Ming Yang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
Jian-Shing Luo
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
Wen-Tai Lin
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
Get access

Abstract

In situ growth of SrBi2Ta2O9 (SBT) films as a function of Bi concentration in the target, substrate temperature, oxygen pressure, and the thickness of bottom Pt electrode by pulsed laser deposition was studied. The SBT phase initially formed at a temperature of 500–520 °C. The SBT films grown from the stoichiometric target generally showed Bi deficiency. A well-crystallized and stoichiometric SBT film could be grown at a temperature of 550–580 °C in 300 mTorr of O2 from the surplus Bi targets, which showed c-axis preferred orientation. The formation temperature of SrTa4O11 (ST) phase was above 600 °C, depending on the Bi concentration in the target. Higher oxygen pressure raised the formation temperatures of the SBT and ST phases and concomitantly enriched the Bi concentration of the SBT films. For the bottom Pt electrode 1200 Å thick, the voids were not observed in the SBT overlayer until the deposition temperatures were above 590 °C. Annealing at temperatures above 700 °C in an atmosphere of O2 was required to improve the contact between Pt electrode and the SBT film and hence the ferroelectric properties of the SBT film. In the present study, a smooth, stoichiometric, and c-axis oriented SBT film, about 350 nm thick, could be grown on Pt (1200 Å)/Ti/SiO2/Si at a temperature of 550–580 °C in 300 mTorr of O2 from the Bi surplus targets, which showed remnant polarization (Pr) of 3.0–3.5 μC/cm2 and coercive field (Ec) of 30–40 kV/cm at 4 V. No fatigue was observed up to 109. switching cycles

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J. F. and Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Scott, J. F., McMillan, L. D., and Araujo, C. A., Ferroelectrics 93, 31 (1989).CrossRefGoogle Scholar
3.Evans, J. T. and Womak, R., IEEE J. Solid-State Circuits SSC-23, 1171 (1988).CrossRefGoogle Scholar
4.Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 37 (1990).CrossRefGoogle Scholar
5.Duiker, H. M., Beale, P. D., Scott, J. F., Araujo, C. A., Melnick, B. M., Cuchiaro, J. D., and McMillan, L. D., J. Appl. Phys. 68, 5783 (1990).CrossRefGoogle Scholar
6.Mihara, T., Watanabe, H., and Araujo, C. A., Jpn. J. Appl. Phys. 33, 3996 (1994).CrossRefGoogle Scholar
7.Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).CrossRefGoogle Scholar
8.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakenaasen, R., and Fork, D. K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
9.Dat, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 2673 (1994).CrossRefGoogle Scholar
10.Al-Shareef, H. N., Kingon, A. I., Chen, X., Bellur, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
11.Eom, C. B., van Dover, R. B., Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
12.Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature (London) 374, 627 (1995).CrossRefGoogle Scholar
13.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 75 (1995).CrossRefGoogle Scholar
14.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 83 (1995).CrossRefGoogle Scholar
15.Dat, R., Lee, J. K., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
16.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
17.Desu, S. B. and Li, T., Mater. Sci. Eng. B34, L4 (1995).CrossRefGoogle Scholar
18.Atsuki, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).CrossRefGoogle Scholar
19.Mihara, T., Yoshimori, H., Watanabe, H., and Araujo, C. A., Jpn. J. Appl. Phys. 34, 5233 (1995).CrossRefGoogle Scholar
20.Watanabe, H., Mihara, T., Yoshimori, H., and Araujo, C. A., Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
21.Lee, J. J., Thio, C. L., and Desu, S. B., J. Appl. Phys. 78, 5073 (1995).CrossRefGoogle Scholar
22.Li, T., Zhu, Y., Desu, S. B., Peng, C. H., and Nagata, M., Appl. Phys. Lett. 68, 616 (1996).CrossRefGoogle Scholar
23.Al-Shareef, H. N., Dimos, D., Boyle, T. J., Warren, W. L., and Tuttle, B. A., Appl. Phys. Lett. 68, 690 (1996).CrossRefGoogle Scholar
24.Newnham, R. E., Wolfe, R. W., and Dorrian, J. F., Mater. Res. Bull. 6, 1029 (1971).CrossRefGoogle Scholar