Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T07:30:47.934Z Has data issue: false hasContentIssue false

In situ formation of MoSi2–SiC through reaction of SiO2 or Si3N4 with Mo and carbon

Published online by Cambridge University Press:  31 January 2011

R. V. Krishnarao
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500058, India
V. V. Ramarao
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500058, India
Y. R. Mahajan
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500058, India
Get access

Abstract

Composite powders of molybdenum silicide–SiC were synthesized by reacting mixtures of (Mo–SiO2 –C), (Mo–Si3N4 –C), and (Mo–SiO2 –Si3N4 –C) powders at 1300 °C. In the (Mo–SiO2 –C) system Mo5Si3 and Mo3Si formed predominantly. MoSi2 formed the major constituent of the reaction product from powder mixtures containing Si3N4. Vapor-solid SiC whiskers formed in the (Mo–SiO2 –C) system. Vapor-liquid-solid whiskers of SiC and Mo5Si3C formed in (Mo–SiO2 –Si3N4–C) and (Mo–Si3N4 –C) systems, respectively. The mechanism of formation of the VLS whiskers and molybdenum silicides was identified as follows: initially a thin layer of Mo2C forms on Mo particle; the Si vapor from thermal decomposition of Si3N4 deposits on the Mo2C surface and forms a droplet of ternary “Nowotny phase” Mo<5Si3C<1; an SiC/Mo5Si3C whisker forms by nucleation and growth from the supersaturated ternary phase; after reaction with the Mo2C layer, the SiO/Si vapor further reacts with Mo particle to form bulk silicides.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Carter, D. H., Petrovic, J. J., Honnell, R. E., and Gibbs, W. S., Ceram. Eng. Sci. Proc. 10, 1121 (1989).CrossRefGoogle Scholar
2.Bhattacharya, A. K. and Petrovic, J. J., J. Am. Ceram. Soc. 74, 2700 (1991).CrossRefGoogle Scholar
3.Richardson, K. K. and Freitag, D. W., Ceram. Eng. Sci. Proc. 12, 1679 (1991).Google Scholar
4.Leng, Y. L. and Lavernia, E. J., J. Mater. Sci. 29, 2557 (1994).Google Scholar
5.Henager, C. H., Jr., Brimhall, J. L., and Hirth, J. P., Scripta Metall. Mater. 26, 585 (1992).Google Scholar
6.Henager, C. H., Jr., Brimhall, J. L., and Hirth, J. P., Mater. Sci Eng. A155, 109 (1992).CrossRefGoogle Scholar
7.Henager, C. H., Jr., Brimhall, J. L., Vetrano, J. S., and Hirth, J. P., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 281.Google Scholar
8.Krishnarao, R. V. and Mahajan, Y. R., J. Mater. Synth. Process. 4, 89 (1996).Google Scholar
9.Krishnarao, R. V. and Mahajan, Y. R., Mater. Sci. Eng. A214, 161 (1996).Google Scholar
10.Krishnarao, R. V. and Godkhindi, M. M., Ceram. Inter. 18, 35 (1992).CrossRefGoogle Scholar
11.Krishnarao, R. V., J. Mater. Sci. 30, 3645 (1995).CrossRefGoogle Scholar
12.Krishnarao, R. V., J. Mater. Sci. Lett. 12, 1268 (1993).CrossRefGoogle Scholar
13.Wei, G. C., Kennedy, C. R., and Harris, L., Am. Ceram. Soc. Bull. 63, 1054 (1984).Google Scholar
14.Lee, J. G. and Cutler, I. B., Am. Ceram. Soc. Bull. 54, 195 (1975).Google Scholar
15.Krishnarao, R. V., Godkhindi, M. M., Mukunda, P. G., and Chakraborty, M., J. Am. Ceram. Soc. 74, 2869 (1991).Google Scholar
16.Saito, M., Nagashima, S., and Kato, A., J. Mater. Sci. Lett. 11, 373 (1992).CrossRefGoogle Scholar
17.Wiedemeier, H. and Singh, M., J. Mater. Sci. 27, 2974 (1992).CrossRefGoogle Scholar
18.Heikinheimo, E., Kodentsov, A., Van Beek, J. A., Klomp, J. T., and van Loo, F. J. J., Acta Metall. Mater. 40, S111–119 (1992).CrossRefGoogle Scholar
19.Krishnarao, R. V. and Godkhindi, M. M., Ceram. Int. 18, 185 (1992).CrossRefGoogle Scholar
20.Krishnarao, R. V. and Godkhindi, M. M., J. Mater. Sci. 27, 2726 (1992).Google Scholar
21.Wang, H. and Fischman, G., Ceram. Sci. Eng. Proc. 13, 722 (1992).Google Scholar
22.Li, J., Peng, G., Chen, S., Chen, Z., and Wu, J., J. Am. Ceram. Soc. 73, 419 (1990).Google Scholar
23.Ivanov, V. Ye., Nechiporenko, Ye. P., and Zmiy, V. I., Fiz. Met. Metalloved. 17, 94 (1964).Google Scholar
24.Nowotny, H., Parthé, E., Kieffer, R., and Benesovsky, F., Monatsh. Chemie. 85, 255 (1954).Google Scholar
25.Subrahmanyam, J. and Mohanrao, R., J. Mater. Res. 10, 1226 (1995).Google Scholar
26.Schuster, J. C., in Structural Ceramics Joining II, edited by Moorhead, A. J. (The American Ceramic Society, Westerville, OH, 1993), p. 43.Google Scholar
27.Henager, C. H., Jr., Brimhall, J. L., and Brush, L. N., Mater. Sci. Eng. A195, 65 (1995).CrossRefGoogle Scholar
28.Henager, C. H., Jr., Brimhall, J. L., and Hirth, J. P., in Structural Intermetallics, edited by Dorolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V. (The Minerals, Metals & Materials Society, Warrendale, PA, 1993), p. 799.Google Scholar
29.Barin, I., Thermochemical Data of Pure Substances (VCH Publishers, Weinheim, Germany, 1993).Google Scholar