Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:58:16.623Z Has data issue: false hasContentIssue false

In situ deposition/positioning of magnetic nanoparticles with ferroelectric nanolithography

Published online by Cambridge University Press:  01 March 2005

Xiaojun Lei
Affiliation:
Department of Materials Science and Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
Dongbo Li
Affiliation:
Department of Materials Science and Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
Rui Shao
Affiliation:
Department of Materials Science and Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
Dawn A. Bonnell*
Affiliation:
Department of Materials Science and Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ferroelectric nanolithography is a new approach to processing nanostructures, which can position multiple components made of various materials into predefined configurations. Local polarization in ferroelectric compounds is manipulated to control the surface electronic structure and direct attachment of molecules and particles. Here, the presence of optically excited electron-hole pairs on ferroelectric domains is confirmed, and reaction paths for photo reduction of several reactive metal particles are determined. Subsequent and simultaneous deposition of multiple metals is demonstrated, and the magnetic properties of Co based particles are confirmed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bonnell, D.A.: Materials in nanotechnology: New structures, new properties, new complexity. J. Vac. Sci. Technol. 21, S194 (2003).CrossRefGoogle Scholar
2.Koops, H.W.P., Dobisz, E. and Urban, J.: Novel lithography and signal processing with water vapor, in The Proceedings of Fourth International Conference on Nanometer-Scale Science and Technology, edited by Bonnell, D.A., Michalske, T.A., Shen, X., and Mcguire, G. (1997) p. 1369.Google Scholar
3.Xia, Y. and Whitesides, G.M.: Soft lithography. Ann. Rev. Mater. Sci. 28, 153 (1998).CrossRefGoogle Scholar
4.Chou, S.Y.: Nanoimprint lithography and lithographically induced self-assembly. MRS Bull. 26, 512 (2001).CrossRefGoogle Scholar
5.Choi, B.J., Sreenivasan, S.V., Johnson, S., Colburn, M. and Wilson, C.G.: Design of orientation stages for step and flash imprint lithography. Precis. Eng. 25, 192 (2001).CrossRefGoogle Scholar
6.Loweth, C.J., Caldwell, W.B., Peng, X., Alivisatos, A.P. and Schultz, P.G.: DNA-based assembly of gold nanocrystals. Angew Chem. Int. Ed. 38, 1808 (1999).3.0.CO;2-C>CrossRefGoogle ScholarPubMed
7.Park, S., Lazarides, A.A., Mirkin, C.A. and Letsinger, R.L.: Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Ed. Engl. 40, 2909 (2001).3.0.CO;2-O>CrossRefGoogle ScholarPubMed
8.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. and Belcher, A.M.: Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665 (2000).CrossRefGoogle ScholarPubMed
9.Piner, R.D., Zhu, J., Xu, F., Hong, S. and Mirkin, C.A.: “Dip-pen” nanolithography. Science 283, 661 (1999).CrossRefGoogle ScholarPubMed
10.Hughes, T.R., Mao, M., Jones, A.R., Burchard, J., Marton, M.J., Shannon, K.W., Lefkowitz, S.M., Ziman, M., Schelter, J.M., Meyer, M.R., Kobayashi, S., Davis, C., Dai, H., He, Y.D., Stephaniants, S.B., Cavet, G., Walker, W.L., West, A., Coffey, E., Shoemaker, D.D., Stoughton, R., Blanchard, A.P., Friend, S.H. and Linsley, P.S.: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342 (2001).CrossRefGoogle ScholarPubMed
11.Duan, X., Huang, Y., Cui, Y., Wang, J. and Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).CrossRefGoogle ScholarPubMed
12.Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J. and Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000).CrossRefGoogle Scholar
13.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z. and Ferris, J.H.: Atomic polarization and local reactivity on ferroelectric surfaces: A new route toward complex nanostructures. Nano Lett. 2, 589 (2002).CrossRefGoogle Scholar
14.Giocondi, J.L. and Rohrer, G.S.: Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem. Mater. 13, 241 (2001).CrossRefGoogle Scholar
15.Giocondi, J.L. and Rohrer, G.S.: Spatial separation of photochemical oxidation and reductions on the surface of ferroelectric BaTiO3. J. Am. Ceram. Soc. 86, 1182 (2003).CrossRefGoogle Scholar
16.Giocondi, J.L. and Rohrer, G.S.: Structure sensitivity of photochemical oxidation and reductions on SrTiO3 surfaces. J. Phys. Chem. B 105, 8275 (2001).CrossRefGoogle Scholar
17.Ferris, J.H., Li, D.B., Kalinin, S.V. and Bonnell, D.A.: Nanoscale domain patterning of lead zirconate titanate materials using electron beams. Appl. Phys. Lett. 84, 774 (2004).CrossRefGoogle Scholar
18.Kalinin, S.V. and Bonnell, D.A.: Screening phenomena on oxide surfaces and its implications for local electrostatic and transport measurements. Nano Lett. 4, 555 (2004).CrossRefGoogle Scholar
19.Lu, J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E. and Guntherodt, H.J.: Kelvin probe force microscopy on surfaces: Investigation of the surface potential of self-assembled monolayers on gold. Langmuir 15, 8184 (1999).CrossRefGoogle Scholar
20.Zeng, H.R., Yin, Q.R., Li, G.R., Luo, H.S. and Xu, Z.K.: Abnormal piezoresponse behavior of Pb(Mg1/3Nb2/3)O3–30%PbTiO3 single crystal studied by high-vacuum scanning force microscope. J. Cryst. Growth 254, 432 (2003).CrossRefGoogle Scholar
21.Bonnell, D.A. and Shao, R.: Local behavior of complex materials: Scanning probes and nanostructure. Curr. Opin. Solid State Mater. Sci. 7, 161 (2003).CrossRefGoogle Scholar
22.Wang, C., Lin, H. and Tang, C.: Thermal characterization and microstructure change of cobalt oxides. Catal. Lett. 94, 69 (2004).CrossRefGoogle Scholar