Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T05:40:58.661Z Has data issue: false hasContentIssue false

Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder

Published online by Cambridge University Press:  29 April 2014

Zhihui Wang
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Yulin Chen
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Vincent Battaglia
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Gao Liu*
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, a conductive polymer, poly(3,4-ethylenedioxythiophene) or PEDOT, was used as binder in the sulfur electrode to study electrochemical performance of lithium–sulfur (Li–S) batteries. PEDOT-based sulfur electrode was compared with that of polyvinylidene difluoride binder based sulfur electrode. Different particle size sulfur materials including commercial micrometric sulfur particles and synthesized colloidal nanometric sulfur powders were chosen as active materials to study the impact of particle size on the cell performance. Different electrolytes including lithium bis(trifluoromethanesulfonyl)imide in polyethylene glycol dimethyl ether (PEGDME) or 1,3-dioxolane-dimethoxy ethane were used in the Li–S batteries to investigate the impact of electrolyte on cell performance. The PEDOT and micrometric sulfur based electrode with PEGDME electrolyte had the best cycle performance, which showed a capacity retention of 68% and specific capacity of 578 mAh/g after 100 cycles. The increased conductivity by conductive polymer and the high viscosity of PEGDME play important roles in the improvement of cycle performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).CrossRefGoogle ScholarPubMed
Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).CrossRefGoogle ScholarPubMed
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.M.: Li-O-2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19 (2012).Google Scholar
Liu, G., Xun, S.D., Vukmirovic, N., Song, X.Y., Olalde-Velasco, P., Zheng, H.H., Battaglia, V.S., Wang, L.W., and Yang, W.L.: Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679 (2011).CrossRefGoogle ScholarPubMed
Ji, L.W., Lin, Z., Alcoutlabi, M., and Zhang, X.W.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682 (2011).Google Scholar
Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle ScholarPubMed
Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., and Yushin, G.: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).CrossRefGoogle ScholarPubMed
Cui, L.F., Ruffo, R., Chan, C.K., Peng, H.L., and Cui, Y.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2009).Google Scholar
Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y., and Peled, E.: Lithium sulfur battery - oxidation reduction-mechanisms of polysulfides in Thf solutions. J. Electrochem. Soc. 135, 1045 (1988).CrossRefGoogle Scholar
Mikhaylik, Y.V. and Akridge, J.R.: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004).Google Scholar
Ji, X.L., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500 (2009).CrossRefGoogle ScholarPubMed
Liang, C.D., Dudney, N.J., and Howe, J.Y.: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724 (2009).CrossRefGoogle Scholar
Zheng, G.Y., Yang, Y., Cha, J.J., Hong, S.S., and Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462 (2011).Google Scholar
Guo, J.C., Xu, Y.H., and Wang, C.S.: Sulfur-impregnated disorder carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288 (2011).Google Scholar
Wang, H.L., Yang, Y., Liang, Y.Y., Robinson, J.T., Li, Y.G., Jackson, A., Cui, Y., and Dai, H.J.: Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644 (2011).CrossRefGoogle ScholarPubMed
Ji, L.W., Rao, M.M., Zheng, H.M., Zhang, L., Li, Y.C., Duan, W.H., Guo, J.H., Cairns, E.J., and Zhang, Y.G.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522 (2011).CrossRefGoogle ScholarPubMed
Xiao, L.F., Cao, Y.L., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z.M., Exarhos, G.J., and Liu, J.: A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176 (2012).Google Scholar
Li, X.L., Meduri, P., Chen, X.L., Qi, W., Engelhard, M.H., Xu, W., Ding, F., Xiao, J., Wang, W., Wang, C.M., Zhang, J.G., and Liu, J.: Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 22, 11014 (2012).Google Scholar
Chen, H.W., Dong, W.L., Ge, J., Wang, C.H., Wu, X.D., Lu, W., and Chen, L.W.: Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci. Rep. 3, 1910 (2013).CrossRefGoogle ScholarPubMed
Seh, Z.W., Li, W.Y., Cha, J.J., Zheng, G.Y., Yang, Y., McDowell, M.T., Hsu, P.C., and Cui, Y.: Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013).Google Scholar
Yang, Y., Yu, G.H., Cha, J.J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z.A., and Cui, Y.: Improving the performance of lithium-sulfur batteries by conductive polymer coating. Acs Nano 5, 9187 (2011).CrossRefGoogle ScholarPubMed
Li, W.Y., Zhang, Q.F., Zheng, G.Y., Seh, Z.W., Yao, H.B., and Cui, Y.: Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534 (2013).Google Scholar
Li, W.Y., Zheng, G.Y., Yang, Y., Seh, Z.W., Liu, N., and Cui, Y.: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. U. S. A. 110, 7148 (2013).Google Scholar
Zhang, S.S.: Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344 (2012).Google Scholar
Song, J., Xu, T., Gordin, M.L., Zhu, P., Lv, D., Jiang, Y-B., Chen, Y., Duan, Y., and Wang, D.: Nitrogen-doped mesoporous carbon promted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243 (2014).Google Scholar
Xu, T., Song, J.X., Gordin, M.L., Sohn, H., Yu, Z.X., Chen, S.R., and Wang, D.H.: Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes. ACS Appl. Mater. Interfaces 5, 11355 (2013).CrossRefGoogle ScholarPubMed
Shin, J.H. and Cairns, E.J.: N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J. Power Sources 177, 537 (2008).CrossRefGoogle Scholar
Shim, J., Striebel, K.A., and Cairns, E.J.: The lithium/sulfur rechargeable cell - Effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149, A1321 (2002).CrossRefGoogle Scholar
Liu, G., Zheng, H., Song, X., and Battaglia, V.S.: Particles and polymer binder interaction: A controlling factor in lithium-ion electrode performance. J. Electrochem. Soc. 159, A214 (2012).Google Scholar