Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T03:55:55.027Z Has data issue: false hasContentIssue false

Impression creep behavior of SiC particle-MoSi2 composites

Published online by Cambridge University Press:  31 January 2011

Darryl P. Butt
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
David A. Korzekwa
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Stuart A. Maloy
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
John J. Petrovic
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Using a cylindrical indenter (or punch), the impression creep behavior of MoSi2-SiC composites containing 0–40% SiC by volume, was characterized at 1000–1200 °C, 258–362 MPa punch pressure. Through finite element modeling, an equation that depends on the material stress exponent was derived that converts the stress distribution beneath the punch to an effective compressive stress. Using this relationship, direct comparisons were made between impression and compressive creep studies. Under certain conditions, compressive creep and impression creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the punch. However, rate-controlling mechanisms may be quite different under the two stressing conditions, in which case impression creep data should not be used to predict compressive creep behavior. The addition of SiC affects the impression creep behavior of MoSi2 in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi2 grains and by obstructing or altering both dislocation motion and grain boundary sliding.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vasudevan, A. K. and Petrovic, J. J., Mater. Sci. Eng. A155, 1 (1992).Google Scholar
2.Petrovic, J. J., MRS Bull. 28 (7), 35 (1993).Google Scholar
3.Unal, O., Petrovic, J. J., Carter, D. H., and Mitchell, T. E., J. Am. Ceram. Soc. 73 (6), 1752 (1990).Google Scholar
4.Maloy, S. A., Mitchell, T. E., Petrovic, J.J., Heuer, A. H., and Lewandowski, J. J., in High-Temperature Silicides and Refractory Alloys, edited by Briant, C. L., Petrovic, J. J., Bewlay, B. P., Vasudevan, A. K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, PA, 1994), p. 21.Google Scholar
5.Sadananda, K., Feng, C. R., Jones, H. N., and Petrovic, J. J., Mater. Sci. Eng. A155, 227 (1992).Google Scholar
6.Sadananda, K., Feng, C. R., Jones, H. N., and Petrovic, J. J., in Structural Intermetallics, Proceedings of the First International Symposium on Structural Intermetallics, Seven Springs, PA, 1993.Google Scholar
7.Wiederhorn, S. M., Gettings, R. J., Roberts, D. E., Ostertag, C., and Petrovic, J. J., Mater. Sci. Eng. A155, 209 (1992).Google Scholar
8.Bose, S., Mater. Sci. Eng. A155, 217 (1992).Google Scholar
9.Yu, E. C. and Li, J. C. M., Philos. Mag. 36 (4), 811 (1977).Google Scholar
10.Yu, E. C. and Li, J. C. M., J. Mater. Sci. 12, 2214 (1977).Google Scholar
11.Chu, S.N.G. and Li, J.C.M., J. Mater. Sci. 12, 2200 (1977).Google Scholar
12.Chu, S.N.G. and Li, J. C. M., Mater. Sci. Eng. 39, 1 (1979).Google Scholar
13.Chu, S.N.G. and Li, J. C. M., Mater. Sci. Eng. 45, 167 (1980).Google Scholar
14.Li, W. B., Henshall, J.L., Hooper, R. M., and Easterling, K. E., Acta Metall. Mater. 39 (12), 3099 (1991).Google Scholar
15.Chiang, D. and Li, J. C. M., J. Mater. Res. 9, 903 (1994).Google Scholar
16.Yang, F. and Li, J. C. M., J. Appl. Phys. 74 (7), 4382 (1993).Google Scholar
17.Yang, F. and J.Li, C. M., J. Appl. Phys. 74 (7), 4390 (1993).Google Scholar
18.Raman, V. and Berriche, R., J. Mater. Res. 7, 627 (1992).Google Scholar
19.De La Torre, A., Adeva, P., and Aballe, M., J. Mater. Sci. 26, 4351 (1991).Google Scholar
20.Lucas, G. E. and Pendleton, C., J. Nucl. Mater. 103, 1539 (1981).Google Scholar
21.Roebuck, B. and Almond, E. A., J. Mater. Sci. Lett. 1, 519 (1982).Google Scholar
22.Li, W. B. and Warren, R., Acta Metall. Mater. 41 (10), 3065 (1993).Google Scholar
23.Backofen, W. A., Deformation Processing (Addison-Wesley Publishing Co., Reading MA, 1972), p. 135.Google Scholar
24.Eggert, G. M. and Dawson, P.R., Int. J. Mech. Sci. 28, 563 (1986).Google Scholar
25.Langdon, T. G., in Deformation of Ceramic Materials, edited by Bradt, R. C. and Tressler, R. E. (Plenum Press, New York, 1975), p. 101.Google Scholar
26.Cannon, W. R. and Langdon, T. G., J. Mater. Sci. 18, 1 (1983).Google Scholar
27.Cotton, J. D., Kim, Y.S., and Kaufman, M. J., Mater. Sci. Eng. A144, 287 (1991).CrossRefGoogle Scholar
28.Kim, Y. S., Johnson, M. R., Abbaschian, R., and Kaufman, M.J., in High-Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 839.Google Scholar
29.Jacobson, N. S., Lee, K.N., Maloy, S. A., and Heuer, A.H., J. Am. Ceram. Soc. 76 (8), 2005 (1993).Google Scholar