Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:10:05.279Z Has data issue: false hasContentIssue false

Impact of interface thermodynamics on Al-induced crystallization of amorphous SixGe1–x alloys

Published online by Cambridge University Press:  12 March 2014

Christian A. Niedermeier
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
Zumin Wang*
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany
Eric J. Mittemeijer
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), D-70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Al-induced crystallization (AIC) of amorphous SixGe1–x (a-SixGe1–x) alloys with compositions over the entire range of the isomorphous Si–Ge system has been investigated. The crystallization progress was monitored by dedicated in situ x-ray diffraction analysis while gradually increasing the annealing temperature. Auger sputter-depth profiling was applied to investigate the occurrence of Al-induced layer exchange of the Al and a-SixGe1–x sublayers after complete crystallization. A-SixGe1–x alloys with x < 0.13 and x > 0.41 show largely different AIC behaviors with respect to crystallization rate and possible layer exchange of the Al and a-SixGe1–x sublayers upon crystallization. A thermodynamic model for AIC of a-SixGe1–x alloys is presented, which well explains these experimental observations and thereby demonstrates the dominant role of interface thermodynamics in the AIC process of amorphous semiconductors. The model can be used to predict the AIC behaviors of a-SixGe1–x alloys over the entire composition range at specified annealing temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.

References

REFERENCES

Eisele, C., Berger, M., Nerding, M., Strunk, H.P., and Nebel, C.E.: Laser-crystallized microcrystalline SiGe alloys for thin film solar cells. Thin Solid Films 427, 176 (2003).CrossRefGoogle Scholar
Gordon, I., Carnel, L., Van Gestel, D., Beaucarne, G., and Poortmans, J.: 8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD. Prog. Photovolt.: Res. Appl. 15, 575 (2007).CrossRefGoogle Scholar
Miyao, M., Kanno, H., and Sadoh, T.: Electric field assisted low-temperature growth of SiGe on insulating films for future TFT. Edited by Shen, W. and Chu, J.. In Proceedings of SPIE (Thin Film Physics and Applications, Sixth International Conference), Vol. 6984, L9840, (SPIE-INT SOC OPTICAL ENGINEERING, Shanghai, China, 2008).Google Scholar
Zhao, S., Meng, Z., Wong, M., and Kwok, H-S.: Metal-induced continuous zonal domain (CZD) polycrystalline silicon thin-film transistors and its application on field sequential color liquid crystal display. J. Disp. Technol. 6, 135 (2010).CrossRefGoogle Scholar
Yamaguchi, S., Sugii, N., Park, S.K., Nakagawa, K., and Miyao, M.: Solid-phase crystallization of Si1-xGex alloy layers. J. Appl. Phys. 89, 2091 (2001).CrossRefGoogle Scholar
Wang, Z., Juergens, L.P.H., Wang, J.Y., and Mittemeijer, E.J.: Fundamentals of metal-induced crystallization of amorphous semiconductors. Adv. Eng. Mater. 11, 131 (2009).CrossRefGoogle Scholar
Spinella, C., Lombardo, S., and Priolo, F.: Crystal grain nucleation in amorphous silicon. Appl. Phys. Rev. 84, 5383 (1998).CrossRefGoogle Scholar
Knaepen, W., Detavernier, C., Van-Meirhaeghe, R.L., Sweet, J.J., and Lavoie, C.: In situ x-ray diffraction study of metal induced crystallization of amorphous silicon. Thin Solid Films 516, 4946 (2008).CrossRefGoogle Scholar
Knaepen, W., Gaudet, S., Detavernier, C., Van-Meirhaeghe, R.L., and Sweet, J.J.: In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. J. Appl. Phys. 105, 083532 (2009).CrossRefGoogle Scholar
Gjukic, M., Buschbeck, M., Lechner, R., and Stutzmann, M.: Aluminum-induced crystallization of amorphous silicon-germanium thin films. Appl. Phys. Lett. 85, 2134 (2004).CrossRefGoogle Scholar
Lechner, R., Buschbeck, M., Gjukic, M., and Stutzmann, M.: Thin polycrystalline SiGe films by aluminium-induced layer exchange. Phys. Status Solidi C 1, 1131 (2004).CrossRefGoogle Scholar
Iwasa, T., Kaneko, T., Nakamura, I., and Isomura, M.: Polycrystalline silicon germanium thin films prepared by aluminum-induced crystallization. Phys. Status Solidi A 207, 617 (2010).CrossRefGoogle Scholar
Kurosawa, M., Tsumura, Y., Sadoh, T., and Miyao, M.: Ge fraction dependence of Al-induced crystallization of SiGe at low temperatures. J. Korean Phys. Soc. 54, 451 (2009).CrossRefGoogle Scholar
Kurosawa, M., Tsumura, Y., Sadoh, T., and Miyao, M.: Interfacial-oxide layer controlled Al-induced crystallization of Si1−xGex (x: 0–1) on insulating substrate. Jpn. J. Appl. Phys. 48, 03B002 (2009).CrossRefGoogle Scholar
Kurosawa, M., Sadoh, T., and Miyao, M.: Al-induced low-temperature crystallization of Si1−xGex (0<x<1) by controlling layer exchange process. Thin Solid Films 518, S174 (2010).CrossRefGoogle Scholar
Kurosawa, M., Kawabata, N., Sadoh, T., and Miyao, M.: Enhanced interfacial-nucleation in Al-induced crystallization for (111) oriented Si1−xGex (0≤x≤1) films on insulating substrates. ECS J. Solid State Sci. Technol. 1, P144 (2012).CrossRefGoogle Scholar
Zhang, T.W., Ma, F., Zhang, W.L., Ma, D.Y., and Xu, K.W.: Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe. Appl. Phys. Lett. 100, 071908 (2012).CrossRefGoogle Scholar
Wang, Z., Wang, J.Y., Jeurgens, L.P.H., and Mittemeijer, E.J.: Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Phys. Rev. B 77, 045424 (2008).CrossRefGoogle Scholar
Li, B., Zheng, B., Zhang, S.Y., and Wu, Z.Q.: Dependence of fractal formation on the thickness ratio in Al/a-Ge bilayers. Phys. Rev. B: Condens. Matter 47, 3638 (1993).Google Scholar
Katsuki, F., Hanafusa, K., Yonemura, M., Koyama, T., and Doi, M.: Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate. J. Appl. Phys. 89, 4643 (2001).CrossRefGoogle Scholar
Konno, T.J. and Sinclair, R.: Crystallization of silicon in aluminium/amorphous-silicon multilayers. Philos. Mag. Part B 66, 749 (1992).CrossRefGoogle Scholar
Wang, J.Y., He, D., Zhao, Y.H., and Mittemeijer, E.J.: Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon. Appl. Phys. Lett. 88, 061910 (2006).CrossRefGoogle Scholar
Wang, Z., Gu, L., Phillipp, F., Wang, J.Y., Jeurgens, L.P.H., and Mittemeijer, E.J.: Metal-catalyzed growth of semiconductor nanostructures without solubility and diffusivity constraints. Adv. Mater. 23, 854 (2011).CrossRefGoogle ScholarPubMed
Wohlschlogel, M., Welzel, U., Maier, G., and Mittemeijer, E.J.: Calibration of a heating/cooling chamber for x-ray diffraction measurements of mechanical stress and crystallographic texture. J. Appl. Crystallogr. 39, 194 (2006).CrossRefGoogle Scholar
Mittemeijer, E.J. and Delhez, R.: Concentration variations within small crystallites studied by x-ray-diffraction line-profile analysis. J. Appl. Phys. 49, 3875 (1978).CrossRefGoogle Scholar
Leineweber, A. and Mittemeijer, E.J.: Notes on the order-of-reflection dependence of microstrain broadening. J. Appl. Crystallogr. 43, 981 (2010).CrossRefGoogle Scholar
Wang, Z.M., Wang, J.Y., Jeurgens, L.P.H., and Mittemeijer, E.J.: “Explosive” crystallisation of amorphous germanium in Ge/Al layer systems; comparison with Si/Al layer systems. Scr. Mater. 55, 987 (2006).CrossRefGoogle Scholar
He, D., Wang, J.Y., and Mittemeijer, E.J.: Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: Microstructural and thermodynamic analysis of layer exchange. Appl. Phys. A: Mater. Sci. Process. 80, 501 (2005).CrossRefGoogle Scholar
Wang, J.Y., Wang, Z., and Mittemeijer, E.J.: Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers. J. Appl. Phys. 102, 113523 (2007).CrossRefGoogle Scholar
Wang, Z., Gu, L., Jeurgens, L.P.H., Phillipp, F., and Mittemeijer, E.J.: Real-time visualization of convective transportation of solid materials at nanoscale. Nano Lett. 12, 6126 (2012).CrossRefGoogle ScholarPubMed
Hiraki, A.: Low temperature reactions at Si/metal interfaces; What is going on at the interfaces? Surf. Sci. Rep. 3, 357 (1983).CrossRefGoogle Scholar
Benedictus, R., Bottger, A., and Mittemeijer, E.J.: Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Phys. Rev. B: Condens. Matter 54, 9109 (1996).CrossRefGoogle ScholarPubMed
Jeurgens, L.P.H., Wang, Z., and Mittemeijer, E.J.: Thermodynamics of reactions and phase transformations at interfaces and surfaces. Int. J. Mater. Res. 100, 1281 (2009).CrossRefGoogle Scholar
Slater, J.C.: Atomic radii in crystals. J. Chem. Phys. 41, 3199 (1964).CrossRefGoogle Scholar