Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:35:17.979Z Has data issue: false hasContentIssue false

Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy

Published online by Cambridge University Press:  31 January 2011

S.R. Snyder
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
T. Foecke
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
H.S. White
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
W.W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

Scanning tunneling microscopy images of the (0001) plane of highly oriented pyrolytic graphite show defect regions consisting of an extensive network of partial dislocations that form extended and contracted nodes. The partial dislocations in hexagonal graphite enclose triangular regions (∼1000 nm on a side) of faulted material comprised of rhombohedral graphite. Electronic and elastic interactions of the tip with the HOPG surface are proposed to explain the observed image contrast between hexagonal and rhombohedral graphite.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Soler, J. M., Baro, A. M., Garcia, N., and Rohrer, H., Phys. Rev. Lett. 57 (4), 444 (1986).CrossRefGoogle Scholar
2. a. Mamin, H. J., Ganz, E., Abraham, D. W., Thomson, R. E., and Clarke, J., Phys. Rev. B 34 (12), 9015 (1986). b. D.Tomanek, S. G. Louie, H. J. Mamin, D. W. Abraham, R. E. Thomson, E. Ganz, and J. Clarke, Phys. Rev. B 35 (14), 7790 (1987).CrossRefGoogle Scholar
3.Kuwabara, M., Clarke, D. R., and Smith, D. A., Appl. Phys. Lett. 56 (24), 2396 (1990).CrossRefGoogle Scholar
4.Liu, C., Chang, H., and Bard, A. J., Langmuir 7 (6), 1138 (1991).CrossRefGoogle Scholar
5.Mizes, H. A. and Foster, J. S., Science 244, 559 (1989).CrossRefGoogle Scholar
6.Mizes, H. A., Park, S., and Harrison, W. A., Phys. Rev. B 36 (8), 4491 (1987).CrossRefGoogle Scholar
7.Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S., and Quate, C. F., Appl. Phys. Lett. 52 (5), 362 (1988).CrossRefGoogle Scholar
8.Selloni, A., Carnevali, P., Tosatti, E., and Chen, C. D., Phys. Rev. B 31 (4), 2602 (1985).CrossRefGoogle Scholar
9.Tersoff, J., Phys. Rev. Lett. 57 (4), 440 (1986).CrossRefGoogle Scholar
10.Salemink, H. W. M., Batra, I. P., Rohrer, H., Stoll, E., and Weibel, E., Surf. Sci. 181, 139 (1987).CrossRefGoogle Scholar
11.Park, S. and Quate, C. F., Appl. Phys. Lett. 48 (2), 112 (1986).CrossRefGoogle Scholar
12.Tomanek, D. and Louie, S. G., Phys. Rev. B 37 (14), 8327 (1988).CrossRefGoogle Scholar
13.Batra, I. P. and Ciraci, S., J. Vac. Sci. Technol. A 6, 313 (1988).CrossRefGoogle Scholar
14.Batra, I. P., Garcia, N., Rohrer, H., Salemink, H., Stoll, E., and Ciraci, S., Surf. Sci. 181, 126 (1987).CrossRefGoogle Scholar
15.Williamson, G. K., Proc. Roy. Soc. A 257, 457 (1960).Google Scholar
16.Fahy, S., Louie, S. G., and Cohen, M. L., Phys. Rev. B 34 (2), 1191 (1986).CrossRefGoogle Scholar
17.Delavignette, P. and Amelinckx, S., J. Nucl. Mater. 5 (1), 17 (1962).CrossRefGoogle Scholar
18.Amelinckx, S. and Delavignette, P., J. Appl. Phys. 31 (12), 2126 (1960).CrossRefGoogle Scholar
19.Lipson, H. and Stokes, A. R., Proc. R. Soc. London, Ser. A 181, 101 (1942).Google Scholar
20.Lo, W., Spence, J. C. H., and Kuwabara, M., STM ‘90, The Fifth Int. Conf. on Scanning Tunneling Microscopy/Spectroscopy, July 23–27, 1990, Baltimore, MD.Google Scholar