Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T08:29:04.843Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts

Published online by Cambridge University Press:  31 January 2011

Jooho Moon
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Jeffrey A. Kerchner
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Henrik Krarup
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
James H. Adair
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Get access

Abstract

The feasibility of the acetylacetonate-Ti isopropoxide complex as a new precursor for synthesis of Ti-based perovskite particles under hydrothermal conditions has been demonstrated. Perovskite powders including BaTiO3, PbTiO3, PZT, PLZT, and SrTiO3 were prepared by reacting the acetylacetonate-modified Ti precursor in metal acetate aqueous salt solution under hydrothermal conditions. Synthesis parameters including reaction time and temperature, feedstock concentration, nd reaction medium significantly influence particle characteristics of the hydrothermally derived erovskite powders. It is proposed that use of the acetylacetonate-modified Ti precursor promotes ntimate mixing among multicomponent reacting species at the molecular level and promotes article formation through a dissolution/recrystallization mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moulson, A. J. and Herbert, J. M., Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, UK, 1990).Google Scholar
2.Hench, L.L. and West, J. K., Principles of Electronic Ceramics (John Wiley & Sons, New York, 1990).Google Scholar
3.Jaffe, B., Cook, W., and Jaffe, H., Piezoelectric Ceramics (Academic Press, Inc., New York, 1971).Google Scholar
4.Suyama, Y. and Yamaguchi, T., in Fundamentals of Ceramic Engineering, edited by Vincenzini, P. (Elsevier Science Publishers, London, UK, 1991), p. 121.Google Scholar
5.Johnson, W. Jr, in Advances in Ceramics Vol. 21, Ceramic Powder Science, edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W., and Haber, R. A. (The American Ceramic Society Inc., Westerville, OH, 1987), p. 3.Google Scholar
6.Shrout, T.R. and Swartz, S. L., in Proceedings of 8th IEEE International Symposium Applications of Ferroelectrics, edited by Liu, M., Safari, A., Kingon, A., and Heartling, G. H. (IEEE Service Center, Piscataway, NJ, 1992), p. 80.Google Scholar
7.Riman, R.E., in Surface and Colloid Chemistry in Advanced Ceramic Processing, Surfactant Science Series Vol. 51, edited by Pugh, R.J. and Bergstrom, L. (Marcel Dekker Inc., New York, 1994), p. 29.Google Scholar
8.Hirano, S., Am. Ceram. Soc. Bull. 66, 1342 (1987).Google Scholar
9.Dawson, W.J., Am. Ceram. Soc. Bull. 67, 1673 (1988).Google Scholar
10.Livage, J., Henry, M., Jolivet, J. P., and Sanchez, C., MRS. Bull. 15, 18 (1990).Google Scholar
11.Lencka, M.M. and Riman, R.E., Chem. Mater. 5, 61 (1993).Google Scholar
12.Lencka, M.M. and Riman, R.E., J. Am. Ceram. Soc. 76, 2649 (1993).Google Scholar
13.Lencka, M.M. and Riman, R. E., Ferroelectrics 151, 159 (1994).Google Scholar
14.Lencka, M.M. and Riman, R.E., Chem. Mater. 7, 18 (1995).Google Scholar
15.Dutta, P.K. and Gregg, J. R., Chem. Mater. 4, 843 (1992).Google Scholar
16.Moon, J., Li, T., Adair, J.H., and Costantino, S. A., unpublished.Google Scholar
17.Whatmore, R.W., in Fundamentals of Ceramic Engineering, edited by Vincenzini, P. (Elsevier Science Publishers, London, UK, 1991), p. 223.Google Scholar
18.Singh, A.P., Mishra, S. K., Pandey, D., Prasad, C. D., and Lal, R., J. Mater. Sci. 28, 5050 (1993).CrossRefGoogle Scholar
19.Bastos, C.M.R, Jafelicci, M. Jr, Varela, J. A., and Zaghette, M. A., in Ceramics Today-Tomorrow's Ceramics, edited by Vincenzini, P. (Elsevier Science Publisher, London, UK, 1991), p. 1983.Google Scholar
20.Randolph, A.D. and Larson, M.A., Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization (Academic Press Inc., San Diego, CA, 1988).Google Scholar
21.Estrin, J., in Handbook of Industrial Crystallization, edited by Myerson, A. S. (Butterworth-Heinemann, Boston, MA, 1993), p. 131.Google Scholar
22.Cho, S-B., Venigalla, S., and Adair, J. H., J. Am. Ceram. Soc. 79, 88 (1996).Google Scholar
23.Cho, S-B., Venigalla, S., and Adair, J. H., in Ceramic Transaction, Vol. 54, Science, Technology, and Applications of Colloidal Suspensions, edited by Adair, J. H., Casey, J. A., Randall, C.A., and Venigalla, S. (The American Ceramic Society, Westerville, OH, 1995), p. 135.Google Scholar
24.Livage, J., in Chemical Processing of Ceramics, edited by Lee, B. I. and Pope, E. J. A. (Marcel Dekker Inc., New York, 1994), p. 3.Google Scholar
25.Phule, P.P. and Khairulla, F., in Ceramics Transactions, Vol. 12, Ceramic Powder Science III, edited by Messing, G. L., Hirano, S-I. Jr, and Hausner, H. (The American Ceramic Society Inc., Westerville, OH, 1990), p. 725.Google Scholar
26.Van Der Linden, W.E. and Den Boef, G., Anal. Chim. Acta 37, 179186 (1967).Google Scholar
27.Gut, R., Schmid, E., and Serralach, J., Helv. Chim. Acta 54, 609624 (1971).Google Scholar
28.Riddick, J. A., Bunger, W. B., and Sakano, T.K., Organic Solvents: Physical Properties and Methods of Purification, Techniques in Chemistry, Volume II (John Wiley Sons, Inc., New York, 1986), p. 359.Google Scholar
29.Serjeant, E.P. and Dempsey, B., Ionisation Constants of Organic Acids in Aqueous Solution (Pergamon Press, New York, 1979), pp. 117118.Google Scholar
30.Duabert, T.E. and Danner, R. P., Physical and Thermodynamic Properties of Pure Chemicals (Hemisphere Publishing Corp., New York, 1976).Google Scholar
31.Martell, A.E. and Smith, R. M., Critical Stability Constants, Volume 3: Other Organic Ligands (Plenum Press, New York, 1974), pp. 244247.Google Scholar
32.Perrin, D.D., Stability Constants of Metal-Ion Complexes, Part B (Pergamon Press, New York, 1979), pp. 273280.Google Scholar
33.Moon, J., Li, T., Randall, C.A., and Adair, J. H., J. Mater. Res. 12, 189197 (1997).Google Scholar
34.Denkewics, R.P. Jr, TenHuisen, K. S., and Adair, J. H., J. Mater. Res. 5, 2698 (1990).Google Scholar
35.Rossetti, G.A. Jr, Watson, D. J., Newnham, R.E., and Adair, J. H., J. Cryst. Growth 116, 251 (1992).Google Scholar
36.Moon, J., Morrone, A., Costantino, S. A., and Adair, J. H., unpublished.Google Scholar