Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:09:55.199Z Has data issue: false hasContentIssue false

Hot forging characteristics of transformation-toughened Al2O3/ZrO2 composites

Published online by Cambridge University Press:  31 January 2011

B. J. Kellett
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106 and University of California, Department of Materials Engineering, Los Angeles, California 90024
F. F. Lange
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106 and University of California, Department of Materials Engineering, Los Angeles, California 90024
Get access

Abstract

Fine grain, transformation-toughened Al2O3/ZrO2 (tetragonal, 5–30 vol. %) composites can exhibit both large deformation strains (80%) and strain rates (> 0.001 s−1) without tearing, cavitating, or cracking during hot forging at 1500 °C. Deformability increases with ZrO2 content. The Al2O3 grains grow, develop a crystallographic orientation, and form column structures with increasing deformation. The deformation behavior of the composite series primarily depends on the content of the ZrO2 phase. In this regard, two deformation regimes were observed that appear to be separated by the volume fraction where the ZrO2 phase might form a connective network.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wakai, F., Sakaguchi, S., and Matsuno, Y., Advan. Ceram. Mater. 1 (3), 259 (1986).CrossRefGoogle Scholar
2Kellett, B. J. and Lange, F. F., J. Am. Ceram. Soc. 69 (8), C172 (1986).CrossRefGoogle Scholar
3Wakai, F., Sakaguchi, S., and Kato, H., J. Ceram. Soc. Jpn. 94 (8), 25 (1986).Google Scholar
4Wakai, F., Kato, H., and Sakaguchi, S., J. Ceram. Soc. Jpn. 94 (9), 1017 (1986).Google Scholar
5Lange, F. F. and Hirlinger, M. M., J. Am. Ceram. Soc. 67 (3), 164 (1984).CrossRefGoogle Scholar
6Lange, F. F., Davis, B. I., and Wright, E., J. Am. Ceram. Soc. 69, (1), 66 (1986).CrossRefGoogle Scholar
7Lange, F. F. and Miller, K. T., Bull. Am. Ceram. Soc. 66, 1498 (1987).Google Scholar
8Lange, F. F., Davis, B. I., and Clarke, D. R., J. Mater. Sci. 15, 600 (1979).Google Scholar
9Wright, D. A., Thorp, J. S., Aypar, A., and Buckley, H. P., J. Mater. Sci. 8, 876 (1973).CrossRefGoogle Scholar
10Chokshi, A. H. and Porter, J. R., J. Am. Ceram. Soc. (to be published).Google Scholar
11Zallen, R., Physics of Amorphous Solids (Wiley, New York, 1983), Chap. 4.CrossRefGoogle Scholar
12Wray, P. J., Acta Metall. 24, 125 (1976).CrossRefGoogle Scholar