Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T07:39:24.407Z Has data issue: false hasContentIssue false

Hot filament assisted diamond growth at low temperatures with oxygen addition

Published online by Cambridge University Press:  31 January 2011

Z. Li Tolt
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6093
L. Heatherly
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6093
R. E. Clausing
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6093
C. S. Feigerle
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600
Get access

Abstract

Addition of a small amount of oxygen to the CH4 and H2 feed gas permits hot filament assisted chemical vapor deposition (HFCVD) of diamond at significantly lower filament and substrate temperatures. The former can be reduced to as low as 1400 °C and the latter to 450 °C. The amount of oxygen required is much lower than what has been used in most studies of the oxygen effect. For each CH4%, there is a narrow window in the O/C ratio, where diamond can be deposited at low temperature. This window shifts to higher O/C ratios as the CH4% increases and expands with increases in filament temperature. The effect of changing substrate and filament temperatures on growth rate and film quality are often not consistent with previous experiences with HFCVD of diamond. Increasing the filament temperature does not always improve the growth rate and film quality, and the non-diamond carbon content in the film is dramatically reduced at lower substrate temperatures. Optimum conditions were found that gave reasonable growth rates (∼0.5 μm/h) with high film quality at filament temperatures below 1750 °C and substrate temperatures below 600 °C. With these reductions in operating temperatures, power consumption can be significantly reduced and the filament lifetime extended indefinitely.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Angus, J. C. and Hayman, C. C., Science 241, 877 (1988).CrossRefGoogle Scholar
2.Celii, F. G. and Butler, J. E., Annu. Rev. Phys. Chem. 42, 643 (1991).Google Scholar
3.Ihara, M., Maeno, H., Miyamoto, D., and Komiyama, H., Appl. Phys. Lett. 59, 1473 (1991).CrossRefGoogle Scholar
4.Yamaguchi, A., Ihara, M., and Komiyama, H., Appl. Phys. Lett. 64, 1306 (1994).CrossRefGoogle Scholar
5.Zhang, Y. F., Dunn-Rankin, D., and Taborek, P., J. Appl. Phys. 74, 6941 (1993).CrossRefGoogle Scholar
6.Saito, Y., Asto, K., Tanaka, H., Fujita, K., and Matuda, S., J. Mater. Sci. 23, 842 (1988).CrossRefGoogle Scholar
7.Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).CrossRefGoogle Scholar
8.Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65, 3488 (1989).Google Scholar
9.Bachmann, P. K., Leers, D., and Lydtyn, H., Diamond Related Mater. 1, 1 (1991).CrossRefGoogle Scholar
10.Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, 519 (1986).Google Scholar
11.Rawles, R. E. and D'Evelyn, M. P., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C. H. Jr, Gildenblat, G., Nakamura, S., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 339, Pittsburgh, PA, 1994), p. 279.Google Scholar
12.Kim, Y-K., Jung, J-H., Lee, J-Y., and Ahn, H-J., J. Mater. Sci. 6, 28 (1995).Google Scholar
13.Tolt, Z. Li, Heatherly, L., Clausing, R. E., Mehta, P., and Feigerle, C. S., unpublished.Google Scholar
14.Sommer, M. and Smith, F. W., J. Vac. Sci. Technol. A 9, 1133 (1991).Google Scholar
15.Hsu, W. L., in Proceeding of Second International Symposium on Diamond and Diamond-like Materials, edited by Purdes, A. J., Angus, J. C., Meyerson, B. S., Spear, K. E., Davis, R. F., and Yoder, M. (Electrochemical Society, Pennington, NJ, 1991), p. 217.Google Scholar
16.Meier, U., Hoinghaus, K. K., Schafer, L., and Klages, C. P., Appl. Opt. 29, 4993 (1990).CrossRefGoogle Scholar
17.Sommer, M. and Smith, F. W., J. Mater. Res. 5, 2433 (1990).CrossRefGoogle Scholar
18.Corat, E. J. and Goodwin, D. G., J. Appl. Phys. 73, 2021 (1993).Google Scholar
19.Tolt, Z. Li, Heatherly, L., Clausing, R. E., and Feigerle, C. S., J. Appl. Phys. 81, 1536 (1997).Google Scholar