Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T06:35:55.684Z Has data issue: false hasContentIssue false

High-temperature stability of nanocrystalline structure in a TiAl alloy prepared by mechanical alloying and hot isostatic pressing

Published online by Cambridge University Press:  31 January 2011

O. N. Senkov
Affiliation:
Institute for Materials and Advanced Processes (IMAP), University of Idaho, Moscow, Idaho 83844–3026
N. Srisukhumbowornchai
Affiliation:
Institute for Materials and Advanced Processes (IMAP), University of Idaho, Moscow, Idaho 83844–3026
M. L. Öveçoglu
Affiliation:
Istanbul Technical University, Maslak 80626, Istanbul, Turkey
F. H. Froes
Affiliation:
Institute for Materials and Advanced Processes (IMAP), University of Idaho, Moscow, Idaho 83844–3026
Get access

Extract

A fully dense nanocrystalline compact of the Ti–47Al–3Cr (at. %) alloy was produced by mechanical alloying and hot isostatic pressing at 725 °C. Microstructure characteristics and grain growth behavior of this compact were studied after annealing for up to 800 h in the temperature range of 725 to 1200 °C, using analytical transmission electron microscopy techniques. The temperature and time dependencies of the grain sizes and the grain size distributions were determined. The grain growth occurred, with a timeand temperature-invariant single-peak grain size distribution (when normalized by the mean grain size), which was consistent with normal grain growth. The experimentally measured grain growth exponent decreased from 10 to 4.6 when the temperature was increased. The grain growth kinetics was described by a single thermally activated rate process limited by a permanent pinning force on the grain boundaries. The microhardness decreased on annealing and followed the Hall–Petch relationship with the parameters Hυo = 5.8 GPa and KH = 1.6 MPa m0.5.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Froes, F. H., Suryanarayana, C., and Eliezer, D., J. Mater. Sci. 27, 51135140 (1992).CrossRefGoogle Scholar
2.Suryanarayana, C., Korth, G. E., Froes, F. H., and Hebeisen, J., Synthesis and Processing of Nanocrystalline Powder (TMS, Warrendale, PA, 1996), pp. 113141.Google Scholar
3.Froes, F. H.et al., Novel Techniques in Synthesis and Processing of Advanced Materials, edited by Singh, J. and Copley, S. M. (TMS, Warrendale, PA, 1995), pp. 122.Google Scholar
4.Koch, C. C., Solid State Powder Processing, edited by Clauer, A. H. and Barbadillo, J. J. d. (TMS, Warrendale, PA, 1993), pp. 3553.Google Scholar
5.Klassen, T., Oehring, M., and Bormann, R., J. Mater. Res. 9, 4752 (1994).CrossRefGoogle Scholar
6.Öveçoglu, M. L., Froes, F. H., Srisukhumbowornchai, N., Chen, X., Mukhopadhyay, D. K., Brand, K., Zick, D., Tylus, P. and Hebeisen, J., ASM Int. Conf. on HIP’ 96, Andover, MA, edited by Froes, F. H., Widmer, R., and Hebeisen, J. (1996), pp. 227233.Google Scholar
7.Froes, F. H., Suryanarayana, C., Srisukhumbowornchai, N., Chen, X., Mukhopadhyay, D.K., Öveçoglu, M. L., Brand, K., and Hebeisen, J., Advances in the Science and Technology of Titanium Alloy Processing, edited by Weiss, I., Srinivasan, R., Bania, P.J., Eylon, D., and Semiatin, S.L. (TMS, Warrendale, PA, 1996), pp. 387395.Google Scholar
8.Weissmuller, J., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D. L. (TMS, Warrendale, PA, 1996), pp. 319.Google Scholar
9.Siegel, R. W., Processing and Properties of Nanocrystalline Materials, edited by Suryanarayana, C., Singh, J., and Froes, F. H. (TMS, Warrendale, PA, 1996), pp. 310.Google Scholar
10.Birringer, R., Mater. Sci. Eng. A117, 3343 (1989).CrossRefGoogle Scholar
11.Gunther, B., Kumpmann, A., and Kunze, H. D., Scripta Metall. Mater. 27 (7), 833838 (1992).CrossRefGoogle Scholar
12.Weissmller, J., Löffler, J., and Kleber, M., NanoStr. Mater. 6, 105114 (1995).CrossRefGoogle Scholar
13.Malow, T. R. and Koch, C. C., Mater. Sci. Forum 225–227, 595604 (1996).CrossRefGoogle Scholar
14.Malow, T. R. and Koch, C. C., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D. L. (TMS, Warrendale, PA, 1996), pp. 3344.Google Scholar
15.Gertsman, V. Y. and Birringer, R., Scripta Metall. Mater. 30 (5), 577582 (1994).CrossRefGoogle Scholar
16.Sursaeva, V. G., Mater. Sci. Forum 62–64, pp. 807808 (1990).Google Scholar
17.Malow, T. R. and Koch, C. C., Acta Mater. 45 (5), 21772186 (1997).CrossRefGoogle Scholar
18.Froes, F. H., Widmer, R., and Hebeisen, J., in ASM Int. Conf. on HIP’ 96, edited by Froes, F. H., Widmer, R., and Hebeisen, J. (ASM International, Materials Park, OH, 1996), pp. 317.Google Scholar
19.Valiev, R. Z., Korznikov, A. V., and Mulyukov, R. R., Mater. Sci. Eng. A168, 141148 (1993).CrossRefGoogle Scholar
20.Atkinson, H. V., Acta Metall. 36 (3), 469491 (1988).CrossRefGoogle Scholar
21.Senkov, O. N. and Myshlyaev, M. M., Acta Metall. 34 (1), 97106 (1986).CrossRefGoogle Scholar
22.Higgins, G. T., Wiryolukito, S., and Nash, P., Grain Growth in Policrystalline Materials, edited by Abbruzzese, G. and Brozzo, P. (Trans. Tech. Publications, Aedermannsdorf, Switzerland, 1992).Google Scholar
23.Gray, E. A. and Higgins, G. T., Acta Metall. 21 309321 (1973).CrossRefGoogle Scholar
24.Vandermeer, R. A. and Hu, H., Acta Metall. Mater. 42 (9), 30713075 (1994).CrossRefGoogle Scholar
25.Sattonnay, G., Dimitrov, C., and Dimitrov, O., in Structural Intermetallics 1997, edited by Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B., Wagner, R., and Yamaguchi, M. (The Metallurgical Society, Warrendale, PA, 1997), pp. 205214.Google Scholar
26.Weertman, J. R., Mater. Sci. Eng. A166, pp. 161167 (1993).CrossRefGoogle Scholar
27.Suryanarayana, C., Int. Mater. Rev. 40 (2), 4164 (1995).CrossRefGoogle Scholar
28.Chang, H., Altstetter, C. J., and Averback, R. S., J. Mater. Res. 7, 29622970 (1992).CrossRefGoogle Scholar
29.Kim, Y-W. and Dimiduk, D.M., in Structural Intermetallics 1997, edited by Nathal, M. V.et al. (TMS, Warrendale, PA, 1997), pp. 531543.Google Scholar
30.Kimura, H. and Hachinohe, A., in Advanced Particulate Materials and Processes, edited by Froes, F. H. and Hebeisen, J. C. (MPIF, Princeton, 1997), pp. 153160.Google Scholar
31.Li, W. B., Henshall, J. L., Hooper, R. M., and Easterling, K. E., Acta Metall. 39 (12), 30993110 (1991).CrossRefGoogle Scholar
32.Senkov, O. N., Öveçoglu, M. L., Srisukhumbovornchai, N., and Froes, F. H., Scripta Mater. 39 (6), 691698 (1998).CrossRefGoogle Scholar