Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T15:14:30.515Z Has data issue: false hasContentIssue false

High-entropy alloys by mechanical alloying: A review

Published online by Cambridge University Press:  14 March 2019

Mayur Vaidya
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Garlapati Mohan Muralikrishna
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Budaraju Srinivasa Murty*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mechanical alloying (MA) followed by sintering has been one of the most widely adopted routes to produce nanocrystalline high-entropy alloys (HEAs). Enhanced solid solubility, room temperature processing, and homogenous alloy formation are the key benefits provided by MA. Spark plasma sintering has largely been used to obtain high-density HEA pellets from milled powders. However, there are many challenges associated with the production of HEAs using MA, which include contamination during milling and high propensity of oxidation. The present review provides a comprehensive understanding of various HEAs produced by MA so far, with the aim to bring out the governing aspects of phase evolution, thermal stability, and properties achieved. The limitations and challenges of the process are also critically assessed with a possible way forward. The paper also compares the results obtained from high-pressure torsion, another severe plastic deformation technique.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).Google Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Yang, M., Liu, X.J., Ruan, H.H., Wu, Y., Wang, H., and Lu, Z.P.: High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).CrossRefGoogle Scholar
Butler, T.M., Alfano, J.P., Martens, R.L., and Weaver, M.L.: High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 67, 246 (2015).CrossRefGoogle Scholar
Laplanche, G., Volkert, U.F., Eggeler, G., and George, E.P.: Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met. 85, 629 (2016).CrossRefGoogle Scholar
Zhao, J.H., Ji, X.L., Shan, Y.P., Fu, Y., and Yao, Z.: On the microstructure and erosion–corrosion resistance of AlCrFeCoNiCu high-entropy alloy via annealing treatment. Mater. Sci. Technol. 32, 1271 (2016).CrossRefGoogle Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).CrossRefGoogle Scholar
Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1 (2013).Google ScholarPubMed
Praveen, S., Basu, J., Kashyap, S., and Kottada, R.S.: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361 (2016).CrossRefGoogle Scholar
Murty, B.S. and Ranganathan, S.: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101 (1998).CrossRefGoogle Scholar
Benjamin, J.S. and Volin, T.E.: The mechanism of mechanical alloying. Metall. Trans. 5, 1929 (1974).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
Ang, A.S.M., Berndt, C.C., Sesso, M.L., Anupam, A., Praveen, S., Kottada, R.S., and Murty, B.S.: Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 46, 791 (2014).CrossRefGoogle Scholar
Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253 (2008).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
MacDonald, B.E., Fu, Z., Zheng, B., Chen, W., Lin, Y., Chen, F., Zhang, L., Ivanisenko, J., Zhou, Y., Hahn, H., and Lavernia, E.J.: Recent progress in high entropy alloy research. JOM 69, 2024 (2017).CrossRefGoogle Scholar
Shi, Y., Yang, B., and Liaw, P.: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).CrossRefGoogle Scholar
Guruvidyathri, K., Hari Kumar, K.C., Yeh, J.W., and Murty, B.S.: Topologically close-packed phase formation in high entropy alloys: A review of calphad and experimental results. JOM 69, 2113 (2017).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Sharma, A.S., Yadav, S., Biswas, K., and Basu, B.: High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater. Sci. Eng., R 131, 1 (2018).CrossRefGoogle Scholar
Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).CrossRefGoogle Scholar
Gómez-Esparza, C.D., Baldenebro-López, F., González-Rodelas, L., Baldenebro-López, J., and Martínez-Sánchez, R.: Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Mater. Res. 19, 39 (2016).CrossRefGoogle Scholar
Sun, C., Li, P., Xi, S., Zhou, Y., Li, S., and Yang, X.: A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering. Mater. Sci. Eng., A 728, 144 (2018).CrossRefGoogle Scholar
Rogal, Ł., Kalita, D., Tarasek, A., Bobrowski, P., and Czerwinski, F.: Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloys Compd. 708, 344 (2017).CrossRefGoogle Scholar
Zaddach, A.J., Niu, C., Oni, A.A., Fan, M., LeBeau, J.M., Irving, D.L., and Koch, C.C.: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy. Intermetallics 68, 107 (2016).CrossRefGoogle Scholar
Fu, Z., Chen, W., Fang, S., and Li, X.: Effect of Cr addition on the alloying behavior, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy. Mater. Sci. Eng., A 597, 204 (2014).CrossRefGoogle Scholar
Moravcik, I., Cizek, J., Gavendova, P., Sheikh, S., Guo, S., and Dlouhy, I.: Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater. Lett. 174, 53 (2016).CrossRefGoogle Scholar
Wu, B., Chen, W., Jiang, Z., Chen, Z., and Fu, Z.: Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe30Ni30Co30Mn10 alloy. Mater. Sci. Eng., A 676, 492 (2016).CrossRefGoogle Scholar
Dwivedi, A., Koch, C.C., and Rajulapati, K.V.: On the single phase fcc solid solution in nanocrystalline Cr–Nb–Ti–V–Zn high-entropy alloy. Mater. Lett. 183, 44 (2016).CrossRefGoogle Scholar
Zhang, S., Sun, Y., Ke, B., Li, Y., Ji, W., Wang, W., and Fu, Z.: Preparation and characterization of TiB2-(supra-nano-dual-phase) high-entropy alloy cermet by spark plasma sintering. Metals 8, 58 (2018).CrossRefGoogle Scholar
Kang, B., Lee, J., Ryu, H.J., and Hong, S.H.: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng., A 712, 616 (2018).CrossRefGoogle Scholar
Ge, W., Wu, B., Wang, S., Xu, S., Shang, C., Zhang, Z., and Wang, Y.: Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Adv. Powder Technol. 28, 2556 (2017).CrossRefGoogle Scholar
Fu, Z., Chen, W., Jiang, Z., MacDonald, B.E., Lin, Y., Chen, F., Zhang, L., and Lavernia, E.J.: Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy. Powder Metall. 5899, 1 (2018).Google Scholar
Salemi, F., Abbasi, M.H., and Karimzadeh, F.: Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying. J. Alloys Compd. 685, 278 (2016).CrossRefGoogle Scholar
Tan, X.R., Zhang, G.P., Zhi, Q., and Liu, Z.X.: Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high-entropy alloy. Mater. Des. 109, 27 (2016).CrossRefGoogle Scholar
Vaidya, M., Karati, A., Marshal, A., Pradeep, K.G., and Murty, B.S.: Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 770, 1004 (2019).CrossRefGoogle Scholar
Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2014).CrossRefGoogle Scholar
Xu, J., Zhao, Z.F., and Wang, Y.: Effect of annealing treatment on the microstructure and magnetic properties of FeSiBAlNi(C, Ce) high entropy alloys. Mater. Sci. Forum 849, 52 (2016).CrossRefGoogle Scholar
Wang, H.L., Gao, T.X., Niu, J.Z., Shi, P.J., Xu, J., and Wang, Y.: Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int. J. Miner., Metall. Mater. 23, 77 (2016).CrossRefGoogle Scholar
Colombini, E., Rosa, R., Trombi, L., Zadra, M., Casagrande, A., and Veronesi, P.: High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating. Mater. Chem. Phys. 210, 78 (2018).CrossRefGoogle Scholar
Prasad, H., Singh, S., and Panigrahi, B.B.: Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy. J. Alloys Compd. 692, 720 (2017).CrossRefGoogle Scholar
Kang, B., Lee, J., Ryu, H.J., and Hong, S.H.: Microstructure, mechanical property and Hall–Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process. J. Alloys Compd. 767, 1012 (2018).CrossRefGoogle Scholar
Kumar, N., Tiwary, C.S., and Biswas, K.: Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 53, 13411 (2018).CrossRefGoogle Scholar
Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703 (2010).CrossRefGoogle Scholar
Vaidya, M., Prasad, A., Parakh, A., and Murty, B.S.: Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37 (2017).CrossRefGoogle Scholar
Xie, Y., Cheng, H., Tang, Q., Chen, W., Chen, W., and Dai, P.: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).CrossRefGoogle Scholar
Cheng, H., Chen, W., Liu, X., Tang, Q., Xie, Y., and Dai, P.: Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater. Sci. Eng., A 719, 192 (2018).CrossRefGoogle Scholar
Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 1027 (2010).CrossRefGoogle Scholar
Fu, Z., Chen, W., Chen, Z., Wen, H., and Lavernia, E.J.: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng., A 619, 137 (2014).CrossRefGoogle Scholar
Shivam, V., Basu, J., Shadangi, Y., Singh, M.K., and Mukhopadhyay, N.K.K.: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 87 (2018).CrossRefGoogle Scholar
Varalakshmi, S., Appa Rao, G., Kamaraj, M., and Murty, B.S.: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J. Mater. Sci. 45, 5158 (2010).CrossRefGoogle Scholar
Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 (2000).CrossRefGoogle Scholar
Murali, M., Kumaresh Babu, S.P., Majhi, J., Vallimanalan, A., and Mahendran, R.: Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy. Powder Metall. 61, 139 (2018).CrossRefGoogle Scholar
Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).CrossRefGoogle Scholar
Joo, S-H., Kato, H., Jang, M.J., Moon, J., Kim, E.B., Hong, S-J., and Kim, H.S.: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591 (2017).CrossRefGoogle Scholar
Wang, P., Cai, H., and Cheng, X.: Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J. Alloys Compd. 662, 20 (2016).CrossRefGoogle Scholar
Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 1 (2017).CrossRefGoogle ScholarPubMed
Praveen, S., Murty, B.S., and Kottada, R.S.: Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65, 1797 (2013).CrossRefGoogle Scholar
Praveen, S., Anupam, A., Sirasani, T., Murty, B.S., and Kottada, R.S.: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans. Indian Inst. Met. 66, 369 (2013).CrossRefGoogle Scholar
Mane, R.B., Rajkumar, Y., and Panigrahi, B.B.: Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metall. 61, 131 (2018).CrossRefGoogle Scholar
Mane, R.B. and Panigrahi, B.B.: Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders. J. Mater. Res. 33, 3321 (2018).CrossRefGoogle Scholar
Mane, R.B. and Panigrahi, B.B.: Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders. Mater. Chem. Phys. 210, 49 (2018).CrossRefGoogle Scholar
Mane, R.B. and Panigrahi, B.B.: Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater. Lett. 217, 131 (2018).CrossRefGoogle Scholar
Colombini, E., Lassinantti Gualtieri, M., Rosa, R., Tarterini, F., Zadra, M., Casagrande, A., and Veronesi, P.: SPS-assisted synthesis of SICp reinforced high entropy alloys: Reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment. Powder Metall. 61, 64 (2018).CrossRefGoogle Scholar
Liu, Z., Lei, Y., Gray, C., and Wang, G.: Examination of solid-solution phase formation rules for high entropy alloys from atomistic Monte Carlo simulations. JOM 67, 2364 (2015).CrossRefGoogle Scholar
Zhang, Y. and Zhou, Y.J.: Solid solution formation criteria for high entropy alloys. Mater. Sci. Forum 561–565, 1337 (2007).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Kumar, A., Dhekne, P., Swarnakar, A.K., and Chopkar, M.K.: Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater. Lett. 188, 73 (2017).CrossRefGoogle Scholar
Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).CrossRefGoogle Scholar
Zhang, M., Zhang, W., Liu, Y., Liu, B., and Wang, J.: FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications. Powder Metall. 61, 123 (2018).CrossRefGoogle Scholar
Zhang, Y., Zhang, B., Li, K., Zhao, G.L., and Guo, S.M.: Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 734, 220 (2018).CrossRefGoogle Scholar
Chen, J., Niu, P., Wei, T., Hao, L., Liu, Y., Wang, X., and Peng, Y.: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630 (2015).CrossRefGoogle Scholar
Shivam, V., Basu, J., Shadangi, Y., Singh, M.K., and Mukhoupadhyay, N.K.: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 20 (2016).Google Scholar
Praveen, S., Anupam, A., Tilak, R., and Kottada, R.S.: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).CrossRefGoogle Scholar
Pohan, R.M., Gwalani, B., Lee, J., Alam, T., Hwang, J.Y., Ryu, H.J., Banerjee, R., and Hong, S.H.: Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 62 (2018).CrossRefGoogle Scholar
Vaidya, M., Armugam, S., Kashyap, S., and Murty, B.S.S.: Amorphization in equiatomic high entropy alloys. J. Non-Cryst. Solids 413, 8 (2015).CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).CrossRefGoogle Scholar
Tian, L.H., Xiong, W., Liu, C., Lu, S., and Fu, M.: Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J. Mater. Eng. Perform. 25, 5513 (2016).CrossRefGoogle Scholar
Ji, W., Zhang, J., Wang, W., Wang, H., Zhang, F., Wang, Y., and Fu, Z.: Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J. Eur. Ceram. Soc. 35, 879 (2014).CrossRefGoogle Scholar
Hadraba, H., Chlup, Z., Dlouhy, A., Dobes, F., Roupcova, P., Vilemova, M., and Matejicek, J.: Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng., A 689, 252 (2017).CrossRefGoogle Scholar
Liu, Y., Wang, J., Fang, Q., Liu, B., Wu, Y., and Chen, S.: Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16 (2016).CrossRefGoogle Scholar
Murali, M., Babu, S.P.K., Krishna, B.J., and Vallimanalan, A.: Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying. Prog. Nat. Sci.: Mater. Int. 26, 380 (2016).CrossRefGoogle Scholar
Mohanty, S., Gurao, N.P., and Biswas, K.: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng., A 617, 211 (2014).CrossRefGoogle Scholar
Yurkova, A.I., Chernyavskii, V.V., and Gorban, V.F.: Structure and mechanical properties of high-entropy AlCuNiFeTi and AlCuNiFeCr alloys produced by mechanical activation followed by pressure sintering. Powder Metall. Met. Ceram. 55, 152 (2016).CrossRefGoogle Scholar
Zhao, R.F., Ren, B., Zhang, G.P., Liu, Z.X., and jian Zhang, J.: Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders. J. Magn. Magn. Mater. 468, 14 (2018).CrossRefGoogle Scholar
Tong, Y., Qi, P., Liang, X., Chen, Y., Hu, Y., and Hu, Z.: Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying. Materials 10, 1 (2018).Google Scholar
Kumar, A., Swarnakar, A.K.A.K., and Chopkar, M.: Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J. Mater. Eng. Perform. 27, 3304 (2018).CrossRefGoogle Scholar
Cheng, H., Liu, X., Tang, Q., Wang, W., Yan, X., and Dai, P.: Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering. J. Alloys Compd. 775, 742 (2019).CrossRefGoogle Scholar
Guo, W., Liu, B., Liu, Y., Li, T., Fu, A., Fang, Q., and Nie, Y.: Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloys Compd. 776, 428 (2019).CrossRefGoogle Scholar
Oleszak, D., Antolak-Dudka, A., and Kulik, T.: High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater. Lett. 232, 160 (2018).CrossRefGoogle Scholar
Shivam, V., Basu, J., Pandey, V.K., Shadangi, Y., and Mukhopadhyay, N.K.: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221 (2018).CrossRefGoogle Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2014).CrossRefGoogle Scholar
Yang, Q., Tang, Y., Wen, Y., Zhang, Q., Deng, D., and Nai, X.: Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering. Powder Metall. 61, 115 (2018).CrossRefGoogle Scholar
Tian, L., Fu, M., and Xiong, W.: Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials 11, 320 (2018).CrossRefGoogle ScholarPubMed
Long, Y., Su, K., Zhang, J., Liang, X., Peng, H., and Li, X.: Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy. Materials 11, 1 (2018).CrossRefGoogle ScholarPubMed
Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71 (2018).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Lee, S.W., and Niihara, K.: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33 (2010).CrossRefGoogle Scholar
Praveen, S., Murty, B.S., and Kottada, R.S.: Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys. J. Nanosci. Nanotechnol. 14, 8106 (2014).CrossRefGoogle ScholarPubMed
Yuhu, F., Yunpeng, Z., Hongyan, G., Huimin, S., and Li, H.: AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met. Mater. Eng. 42, 1127 (2013).CrossRefGoogle Scholar
Fu, Z.Q., Chen, W.P., Fang, S.C., Zhang, D.Y., Xiao, H.Q., and Zhu, D.Z.: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).CrossRefGoogle Scholar
Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., and Yang, S.: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater. Des. 44, 535 (2013).CrossRefGoogle Scholar
Kumar, D., Maulik, O., Bagri, A.S., Prasad, Y.V.S.S., and Kumar, V.: Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy. Mater. Today: Proc. 3, 2926 (2016).CrossRefGoogle Scholar
Koundinya, N.T.B.N., Sajith Babu, C., Sivaprasad, K., Susila, P., Kishore Babu, N., and Baburao, J.: Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J. Mater. Eng. Perform. 22, 3077 (2013).CrossRefGoogle Scholar
Mridha, S., Samal, S., Khan, P.Y., Biswas, K., and Govind, : Processing and consolidation of nanocrystalline Cu–Zn–Ti–Fe–Cr high-entropy alloys via mechanical alloying. Metall. Mater. Trans. A 44, 4532 (2013).CrossRefGoogle Scholar
Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).CrossRefGoogle Scholar
Průša, F., Šenková, A., Kučera, V., Čapek, J., and Vojtěch, D.: Properties of a high-strength ultrafine-grained CoCrFeNiMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 734, 341 (2018).CrossRefGoogle Scholar
Fang, S., Chen, W., and Fu, Z.: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973 (2014).CrossRefGoogle Scholar
Wang, C., Ji, W., and Fu, Z.: Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 25, 1334 (2014).CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Chen, Z., and Lavernia, E.J.: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).CrossRefGoogle Scholar
Chen, Z., Chen, W., Wu, B., Cao, X., Liu, L., and Fu, Z.: Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 648, 217 (2015).CrossRefGoogle Scholar
Baldenebro-Lopez, F.J., Herrera-Ramírez, J.M., Arredondo-Rea, S.P., Gómez-Esparza, C.D., and Martínez-Sánchez, R.: Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. J. Alloys Compd. 643, S250 (2015).CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Morgan, S., Chen, F., Zheng, B., Zhou, Y., Zhang, L., and Lavernia, E.J.: Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 644, 10 (2015).CrossRefGoogle Scholar
Khanchandani, H., Sharma, P., Kumar, R., Maulik, O., and Kumar, V.: Effect of sintering on phase evolution in AlMgFeCuCrNi4.75 high entropy alloy. Adv. Powder Technol. 27, 289 (2016).CrossRefGoogle Scholar
Moravcik, I., Cizek, J., Zapletal, J., Kovacova, Z., Vesely, J., Minarik, P., Kitzmantel, M., Neubauer, E., and Dlouhy, I.: Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Des. 119, 141 (2017).CrossRefGoogle Scholar
Yu, P.F., Zhang, L.J., Cheng, H., Zhang, H., Ma, M.Z., Li, Y.C., Li, G., Liaw, P.K., and Liu, R.P.: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82 (2016).CrossRefGoogle Scholar
Wang, P., Cai, H., Zhou, S., and Xu, L.: Processing, microstructure and properties of Ni1.5CoCuFeCr0.5−xVx high entropy alloys with carbon introduced from process control agent. J. Alloys Compd. 695, 462 (2017).CrossRefGoogle Scholar
Shang, C., Axinte, E., Sun, J., Li, X., Li, P., Du, J., Qiao, P., and Wang, Y.: CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des. 117, 193 (2017).CrossRefGoogle Scholar
Maulik, O., Kumar, D., Kumar, S., Fabijanic, D.M., and Kumar, V.: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46 (2016).CrossRefGoogle Scholar
Maulik, O. and Kumar, V.: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116 (2015).CrossRefGoogle Scholar
Zhang, B., Duan, Y., Cui, Y., Ma, G., Wang, T., and Dong, X.: A new mechanism for improving electromagnetic properties based on tunable crystallographic powders. RSC Adv. 8, 14936 (2018).CrossRefGoogle Scholar
Moravcik, I., Gouvea, L., Hornik, V., Kovacova, Z., Kitzmantel, M., Neubauer, E., and Dlouhy, I.: Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr. Mater. 157, 24 (2018).CrossRefGoogle Scholar
Alijani, F., Reihanian, M., and Gheisari, K.: Study on phase formation in magnetic FeCoNiMnV high entropy alloy produced by mechanical alloying. J. Alloys Compd. 773, 623 (2019).CrossRefGoogle Scholar
Nam, S., Kim, M.J., Hwang, J.Y., and Choi, H.: Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J. Alloys Compd. 762, 29 (2018).CrossRefGoogle Scholar
Yadav, S., Sarkar, S., Aggarwal, A., Kumar, A., and Biswas, K.: Wear and mechanical properties of novel (CuCrFeTiZn)100−xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410–411, 93 (2018).CrossRefGoogle Scholar
Zhang, B., Duan, Y., Cui, Y., Ma, G., Wang, T., and Dong, X.: Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173 (2018).CrossRefGoogle Scholar
Baker, H. and Okamoto, H.: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, Ohio, 1992); p. 1741.Google Scholar
Vaidya, M., Guruvidyathri, K., and Murty, B.S.: Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd. 774, 856 (2019).CrossRefGoogle Scholar
Chen, Y.L., Hu, Y.H., Hsieh, C.A., Yeh, J.W., and Chen, S.K.: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768 (2009).CrossRefGoogle Scholar
Ma, L., Wang, L., Zhang, T., and Inoue, A.: Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe, Co, Ni) alloys. Mater. Trans. 43, 277 (2002).CrossRefGoogle Scholar
Ge, W., Wang, Y., Shang, C., Zhang, Z., and Wang, Y.: Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering. J. Mater. Sci. 52, 5726 (2017).CrossRefGoogle Scholar
Chen, Y.L., Tsai, C.W., Juan, C.C., Chuang, M.H., Yeh, J.W., Chin, T.S., and Chen, S.K.: Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloys Compd. 506, 210 (2010).CrossRefGoogle Scholar
Chen, Y.L., Hu, Y.H., Tsai, C.W., Hsieh, C.A., Kao, S.W., Yeh, J.W., Chin, T.S., and Chen, S.K.: Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. J. Alloys Compd. 477, 696 (2009).CrossRefGoogle Scholar
Chen, Y.L., Hu, Y.H., Tsai, C.W., Yeh, J.W., Chen, S.K., and Chang, S.Y.: Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys. Mater. Chem. Phys. 118, 354 (2009).CrossRefGoogle Scholar
Weeber, A.W. and Bakker, H.: Amorphization by ball milling. A review. Physica B 153, 93135 (1988).CrossRefGoogle Scholar
Wang, W., Li, B., Zhai, S., Xu, J., Niu, Z., Xu, J., and Wang, Y.: Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering. Met. Mater. Int. 24, 11121119 (2018).CrossRefGoogle Scholar
Zhang, L.C., Kim, K.B., Yu, P., Zhang, W.Y., Kunz, U., and Eckert, J.: Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. J. Alloys Compd. 428, 157 (2007).CrossRefGoogle Scholar
Nguyen, H-V., Kim, J-S., Kwon, Y-S., and Kim, J-C.: Amorphous Ti–Cu–Ni–Al alloys prepared by mechanical alloying. J. Mater. Sci. 44, 2700 (2009).CrossRefGoogle Scholar
Portnoi, V.K., Leonov, A.V., Filippova, S.E., Streletskii, A.N., and Logacheva, A.I.: Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr–Fe–Co–Ni–Al–Ti alloy. Inorg. Mater. 50, 1202 (2014).CrossRefGoogle Scholar
Wang, J., Zheng, Z., Xu, J., and Wang, Y.: Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 58 (2014).CrossRefGoogle Scholar
Xu, J., Shang, C., Ge, W., Jia, H., Liaw, P.K., and Wang, Y.: Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys. Adv. Powder Technol. 27, 1418 (2016).CrossRefGoogle Scholar
Xu, J., Axinte, E., Zhao, Z., and Wang, Y.: Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys. J. Magn. Magn. Mater. 414, 59 (2016).CrossRefGoogle Scholar
juan Ge, W., ting Li, X., Li, P., chao Qiao, P., wei Du, J., Xu, S., and Wang, Y.: Microstructures and properties of CuZrAl and CuZrAlTi medium entropy alloys prepared by mechanical alloying and spark plasma sintering. J. Iron Steel Res. Int. 24, 448 (2017).Google Scholar
Zhu, X., Zhou, X., Yu, S., Wei, C., Xu, J., and Wang, Y.: Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M = Co, Cu, Ag) amorphous high entropy alloys. J. Magn. Magn. Mater. 430, 59 (2017).CrossRefGoogle Scholar
Shatynski, S.R.: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105 (1979).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 34 (2009).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Characterization of nanocrystalline CoCrFeNiCuAl high-entropy alloy powder processed by mechanical alloying. Mater. Sci. Forum 620–622, 383 (2009).CrossRefGoogle Scholar
Sriharitha, R., Murty, B.S., and Kottada, R.S.: Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 32, 119 (2013).CrossRefGoogle Scholar
Sriharitha, R., Murty, B.S., and Kottada, R.S.: Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).CrossRefGoogle Scholar
Niu, B., Ji, W., Li, N., Zhang, F., and Wu, Y.: Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying. Mater. Sci. Technol. 32, 94 (2016).CrossRefGoogle Scholar
Wang, J., Guo, T., Li, J., Jia, W., and Kou, H.: Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 192 (2018).CrossRefGoogle Scholar
Zhu, J.M., Fu, H.M., Zhang, H.F., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys. J. Alloys Compd. 509, 3476 (2011).CrossRefGoogle Scholar
Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).CrossRefGoogle ScholarPubMed
Yang, P., Liu, Y., Zhao, X., Cheng, J., and Li, H.: Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31, 2398 (2016).CrossRefGoogle Scholar
Moon, J., Qi, Y., Tabachnikova, E., Estrin, Y., Choi, W.M., Joo, S.H., Lee, B.J., Podolskiy, A., Tikhonovsky, M., and Kim, H.S.: Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Mater. Lett. 202, 86 (2017).CrossRefGoogle Scholar
Schuh, B., Völker, B., Maier-Kiener, V., Todt, J., Li, J., and Hohenwarter, A.: Phase decomposition of a single-phase AlTiVNb high-entropy alloy after severe plastic deformation and annealing. Adv. Eng. Mater. 19, 1 (2017).CrossRefGoogle Scholar
Čížek, J., Haušild, P., Cieslar, M., Melikhova, O., Vlasák, T., Janeček, M., Král, R., Harcuba, P., Lukáč, F., Zýka, J., and Málek, J.: Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J. Alloys Compd. 553, 316 (2018).Google Scholar
Wu, W., Ni, S., Liu, Y., Liu, B., and Song, M.: Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion. Mater. Charact. 127, 111 (2017).CrossRefGoogle Scholar
Kilmametov, A., Kulagin, R., Mazilkin, A., Seils, S., Boll, T., Heilmaier, M., and Hahn, H.: High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr. Mater. 158, 29 (2019).CrossRefGoogle Scholar
Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342 (2017).CrossRefGoogle Scholar
Shahmir, H., Mousavi, T., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 705, 411 (2017).CrossRefGoogle Scholar
Shu, F.Y., Liu, S., Zhao, H.Y., He, W.X., Sui, S.H., Zhang, J., He, P., and Xu, B.S.: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder. J. Alloys Compd. 731, 662 (2018).CrossRefGoogle Scholar
Yang, P., Liu, Y., Zhao, X., Cheng, J., and Li, H.: Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27, 1128 (2016).CrossRefGoogle Scholar
Zhu, G., Liu, Y., and Ye, J.: Fabrication and properties of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater. Lett. 113, 80 (2013).CrossRefGoogle Scholar
Tan, Z., Wang, L., Xue, Y., Zhang, P., Cao, T., and Cheng, X.: High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater. Des. 109, 219 (2016).CrossRefGoogle Scholar
Yang, S., Yan, X., Yang, K., and Fu, Z.: Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131, 69 (2016).CrossRefGoogle Scholar
Vasanthakumar, K., Karthiselva, N.S., Chawake, N.M., and Bakshi, S.R.: Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J. Alloys Compd. 709, 829 (2017).CrossRefGoogle Scholar
Sun, W., Huang, X., and Luo, A.A.: Phase formations in low density high entropy alloys. Calphad 56, 19 (2017).CrossRefGoogle Scholar
Vaidya, M., Mohan Muralikrishna, G., Divinski, S.V., and Murty, B.S.: Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scr. Mater. 157, 81 (2018).CrossRefGoogle Scholar
Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).CrossRefGoogle Scholar
Divinski, S.V., Pokoev, A., Esakkiraja, N., and Paul, A.: A mystery of “sluggish diffusion” in high-entropy alloys: The truth or a myth? arXiv preprint arXiv:1804.03465 (2018).Google Scholar