Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T11:59:06.306Z Has data issue: false hasContentIssue false

High-energy electron irradiation study of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 and Pb1−xLax[Mg(1+x)/3Nb(2−x)/3]O3 by transmission electron microscopy

Published online by Cambridge University Press:  31 January 2011

Shu Miao
Affiliation:
Electron Microscopy Laboratory, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China, and Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Jing Zhu
Affiliation:
Electron Microscopy Laboratory, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China, and Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
X. W. Zhang
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China, and State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
X. H. Chen
Affiliation:
Electron Microscopy Laboratory, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China, and Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Get access

Abstract

The electron irradiation sensitivities of Pb(Mg1/3Nb2/3)O3 (PMN) and Pb1−xLax[Mg(1+x)/3Nb(2−x)/3]O3 (PLMN) ceramics were investigated by transmission electron microscopy. Nanoscale Pb particles formed in these materials under electron beam radiation. It was found that these fine Pb particles generally had a preferred crystallographic orientation relationship with the PMN/PLMN host and always existed at positions slightly rich in Mg2+. A preliminary mechanism involving defect chemistry reactions is proposed to interpret this unusual Pb precipitation. Possible limitations to the practical applications of these materials are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Service, R.F., Science 275, 1878 (1997).CrossRefGoogle Scholar
2.Scott, J.F. and Araujo, C.A.P., Science 246, 1400 (1989).CrossRefGoogle Scholar
3.Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
4.Park, S.E. and Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
5.Warren, W.L., Dimos, D., and Waser, R.M., Mater. Res. Bull. 21, 40 (1996).CrossRefGoogle Scholar
6.Buchanan, R.C., Armstrong, T.R., and Roseman, R.D., Ferroelectrics 135, 343 (1992).CrossRefGoogle Scholar
7.Raymond, M.V. and Smyth, D.M., J. Phys. Chem. Solids 57, 1507 (1996).CrossRefGoogle Scholar
8.Park, C.H. and Chadi, D.J., Phys. Rev. B 57, 961 (1998).Google Scholar
9.Warren, W.L., Dimos, D., Tuttle, B.A., Nasby, R.D., and Pike, G.E., Appl. Phys. Lett. 65, 1018 (1994).CrossRefGoogle Scholar
10.Mihara, T., Watanabe, H., and Araujo, C.A.P., Jpn. J. Appl. Phys. Part 1 32, 4168 (1993).CrossRefGoogle Scholar
11.Warren, W.L., Pike, G.E., Tuttle, B.A., and Dimos, D., Appl. Phys. Lett. 70, 2010 (1997).CrossRefGoogle Scholar
12.Moore, R.A. and Benedetto, J.M., IEEE Trans. Nucl. Sci. 42, 1575 (1995).CrossRefGoogle Scholar
13.Gao, J.X., Zheng, L.R., Song, Z.T., Lin, C.L., and Zhu, D.Z., Mater. Lett. 42, 345 (2000).CrossRefGoogle Scholar
14.Coic, Y.M., Musseau, O., and Leray, J.L., IEEE Trans. Nucl. Sci. 41, 495 (1994).CrossRefGoogle Scholar
15.Swartz, S.L. and Shrout, T.R., Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
16.Pokov, V.A. and Mglinkova, I.E., Sov. Phys.—Solid State (Engl. Transl.) 3, 613 (1961).Google Scholar
17.Lide, D.R., Handbook of Chemistry and Physics (CRC Press, New York, 2000).Google Scholar
18.Banhart, F., Rep. Prog. Phys. 62, 1181 (1999).CrossRefGoogle Scholar
19.Baufeld, B., Baither, D., Messerschmidt, U., Bartsch, M., and Merkel, I., J. Am. Ceram. Soc. 76, 3163 (1993).CrossRefGoogle Scholar
20.Buck, E.C., Radiat. Ef. Def. Solids 133, 15 (1995).CrossRefGoogle Scholar
21.Jenkins, M.L., J. Nucl. Mater. 216, 124 (1994).CrossRefGoogle Scholar
22.Wang, S.X., Wang, L.M., and Ewing, R.C., J. Nucl. Mater. 278, 233 (2000).CrossRefGoogle Scholar
23.Wang, L.M., Wang, S.X., Ewing, R.C., Meldrum, A., Birtcher, R.C., Provencio, P. Newcomer, Weber, W.J., and Matzke, H., Mater. Sci. Eng. A286, 72 (2000).CrossRefGoogle Scholar
24.Emsley, J., The Elements, (Carendon Press, Oxford, U.K., 1989).Google Scholar
25.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1976).Google Scholar
26.Jin, H.Z., Zhu, J., Miao, S., Zhang, X.W., and Cheng, Z.Y., J. Appl. Phys. 89, 5048 (2001).CrossRefGoogle Scholar
27.Miao, S., Zhang, X.W., and Zhu, J., J. Am. Ceram. Soc. 84, 2091 (2001).CrossRefGoogle Scholar
28.Cross, L.E., Ferroelectrics 151, 305 (1994).CrossRefGoogle Scholar
29.Viehland, D., Li, J.F., Jang, S.J., and Cross, L.E., Phys. Rev. B 43, 8316 (1991).CrossRefGoogle Scholar
30.Burns, G. and Dacol, F.H., Solid State Commun 48, 853 (1983).CrossRefGoogle Scholar
31.Morgownik, A. and Mydosh, J., Phys. Rev. B 24, 5277 (1981).CrossRefGoogle Scholar
32.Zhang, Q.M., Bharti, V., and Zhao, X., Science 280, 2101 (1998).CrossRefGoogle Scholar