Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T17:04:09.906Z Has data issue: false hasContentIssue false

High temperature epitaxial growth and structure of Nb films on α–Al2O3(0001)

Published online by Cambridge University Press:  31 January 2011

Thomas Wagner
Affiliation:
Max-Planck-Institut fü Metallforschung, Stuttgart, Germany
Get access

Abstract

Epitaxial Nb thin films were grown via molecular beam epitaxy (MBE) at different substrate temperatures on α–Al2O3(0001) substrates. For temperatures of 900 °C to 1100 °C, it was found that Nb grows in the Volmer–Weber growth mode (formation of three-dimensional crystallites). Depending on the growth temperature, different epitaxial orientations of Nb films can be found. At a growth temperature of 900 °C, the Nb{111} planes are parallel to the sapphire basal plane whereas at 1100 °C the Nb grows with the {110} planes on the basal plane of sapphire. These orientations are present even in the initial stages of growth at both temperatures. The formation of two different epitaxial orientations of thick Nb films can be conclusively explained only by considering both the change in the total density of Nb islands with temperature and the influence of island size on the total energy of the islands. The Nb island growth process has been investigated in situ using reflection high energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were employed to determine the morphology and structure of Nb islands, Nb films, and Nb/α–Al2O3 interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bauer, E., Z. Kristallogr. 110, 423 (1958).Google Scholar
2.Pashley, D. W., in Processing of Metals and Alloys, Materials Science and Technology, edited by Chan, R. W., Haasen, P., and Kramer, E. J. (VCH, Weinheim, 1991), Vol. 15, p. 289.Google Scholar
3.Merwe, J. H. v. d., Interf. Sci. 1, 77 (1993).CrossRefGoogle Scholar
4.Venables, J. A., Spiller, G. D. T., and Hanbücken, M., Pep. Prog. Phys. 47, 399 (1984).CrossRefGoogle Scholar
5.Thompson, C. V., J. Appl. Phys. 58, 763 (1985).CrossRefGoogle Scholar
6.Thompson, C. V., Acta Metall. 36, 2929 (1988).CrossRefGoogle Scholar
7.Wagner, T., Lorenz, M., and Rühle, M., J. Mater. Res. 11, 1255 (1996).CrossRefGoogle Scholar
8.Durbin, S. M., Cunningham, J. E., and Flynn, C. P., J. Phys. F: Met. Phys. 12, L75 (1982).CrossRefGoogle Scholar
9.Mayer, J., Flynn, C. P., and Rühle, M., Ultramicroscopy 33, 51 (1990).CrossRefGoogle Scholar
10.Strecker, A., Salzberger, U., and Mayer, J., Prakt. Metallogr. 30, 481 (1993).Google Scholar
11.Cuomo, J. J. and Angilello, J., J. Electrochem. Soc. 120, 125 (1973).CrossRefGoogle Scholar
12.Bauer, E., Appl. Surf. Sci. 11/12, 479 (1982).CrossRefGoogle Scholar
13.Jesser, W. A. and Kuhlmann-Wilsdorf, D., Phys. Status Solidi 19, 95 (1967).CrossRefGoogle Scholar
14.Trampert, A., Ernst, F., Flynn, C. P., Fischmeister, H. F., and Rühle, M., Acta Metall. Mater. 40, S227 (1992).CrossRefGoogle Scholar
15.Matthews, J. W., Philos. Mag. 12, 1143 (1965).CrossRefGoogle Scholar
16.Matthews, J. W., Surf. Sci. 31, 241 (1972).CrossRefGoogle Scholar
17.Mader, W., Z. Metallkde. 80, 139 (1989).Google Scholar
18.Knaus, D. and Mader, W., Ultramicroscopy 37, 247 (1991).CrossRefGoogle Scholar
19.Burger, K., Mader, W., and Rühle, M., Ultramicroscopy 22, 1 (1987).CrossRefGoogle Scholar
20.Burger, K. and Rühle, M., Ultramicroscopy 29, 88 (1988).CrossRefGoogle Scholar
21.Gmelins Handbuch der anorganischen Chemie: Niob Teil A (Verlag Chemie GmbH, Weinheim, 1973).Google Scholar
22.Leadbetter, M. J. and Argent, B. B., J. Less. Commun. Met. 3, 19 (1961).CrossRefGoogle Scholar
23.Elssner, G. and Hörz, G., Z. Metallkde. 62, 217 (1971).Google Scholar
24.Korn, D., Thesis, Universität Stuttgart (1993).Google Scholar
25.Mader, W. and Knauss, K., Acta Metall. Mater. 40, S207 (1992).CrossRefGoogle Scholar
26.Vitek, V., Gutekunst, G., Mayer, J., and Rühle, M., Philos. Mag. A 71, 1219 (1995).CrossRefGoogle Scholar
27.Gutkin, M. Y. and Romanov, E. A., Phys. Status Solidi 144, 39 (1994).CrossRefGoogle Scholar