Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:12:52.717Z Has data issue: false hasContentIssue false

Hexagonal close-packed high-entropy alloy formation under extreme processing conditions

Published online by Cambridge University Press:  22 January 2019

Ram Devanathan*
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Weilin Jiang
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Karen Kruska
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Michele A. Conroy
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Timothy C. Droubay
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Jon M. Schwantes
Affiliation:
National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We assess the validity of criteria based on size mismatch and thermodynamics in predicting the stability of the rare class of high-entropy alloys (HEAs) that form in the hexagonal close-packed crystal structure. We focus on nanocrystalline HEA particles composed predominantly of Mo, Tc, Ru, Rh, and Pd along with Ag, Cd, and Te, which are produced in uranium dioxide fuel under the extreme conditions of nuclear reactor operation. The constituent elements are fission products that aggregate under the combined effects of irradiation and elevated temperature as high as 1200 °C. We present the recent results on alloy nanoparticle formation in irradiated ceria, which was selected as a surrogate for uranium dioxide, to show that radiation-enhanced diffusion plays an important role in the process. This work sheds light on the initial stages of alloy nanoparticle formation from a uniform dispersion of individual metals. The remarkable chemical durability of such multiple principal element alloys presents a solution, namely, an alloy waste form, to the challenge of immobilizing Tc.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This work was performed while M.A. Conroy was at Pacific Northwest National Laboratory.

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).CrossRefGoogle Scholar
Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).CrossRefGoogle ScholarPubMed
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
Melnick, A. and Soolshenko, V.: Thermodynamic design of high-entropy refractory alloys. J. Alloys Compd. 694, 223 (2017).CrossRefGoogle Scholar
Miracle, D. and Senkov, O.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Widom, M.: Modeling the structure and thermodynamics of high-entropy alloys. J. Mater. Res. 33, 28812898 (2018).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Schön, C.G., Duong, T., Wang, Y., and Arróyave, R.: Probing the entropy hypothesis in highly concentrated alloys. Acta Mater. 148, 263 (2018).CrossRefGoogle Scholar
Pickering, E. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Middleburgh, S., King, D., and Lumpkin, G.: Atomic scale modelling of hexagonal structured metallic fission product alloys. R. Soc. Open Sci. 2, 140292 (2015).CrossRefGoogle ScholarPubMed
Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L., Widom, M., and Hawk, J.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238251 (2017).CrossRefGoogle Scholar
Senkov, O., Miller, J., Miracle, D., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Tang, Z., Huang, L., He, W., and Liaw, P.K.: Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16, 895 (2014).CrossRefGoogle Scholar
Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G., Yeh, J., Tsai, C., Chuang, A., and Liaw, P.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Yusenko, K.V., Riva, S., Carvalho, P.A., Yusenko, M.V., Arnaboldi, S., Sukhikh, A.S., Hanfland, M., and Gromilov, S.A.: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 138, 22 (2017).CrossRefGoogle Scholar
Gao, M.C., Zhang, B., Guo, S., Qiao, J., and Hawk, J.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 3322 (2016).CrossRefGoogle Scholar
Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).CrossRefGoogle Scholar
Gao, M.C. and Alman, D.E.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).CrossRefGoogle Scholar
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).CrossRefGoogle Scholar
Zhao, Y., Qiao, J., Ma, S., Gao, M., Yang, H., Chen, M., and Zhang, Y.: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 10 (2016).CrossRefGoogle Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).CrossRefGoogle Scholar
Tracy, C.L., Park, S., Rittman, D.R., Zinkle, S.J., Bei, H., Lang, M., Ewing, R.C., and Mao, W.L.: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017).CrossRefGoogle ScholarPubMed
Zhang, F., Wu, Y., Lou, H., Zeng, Z., Prakapenka, V.B., Greenberg, E., Ren, Y., Yan, J., Okasinski, J.S., Liu, X., Liu, Y., Zeng, Q., and Lu, Z.: Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).CrossRefGoogle Scholar
Moon, J., Qi, Y., Tabachnikova, E., Estrin, Y., Choi, W-M., Joo, S-H., Lee, B-J., Podolskiy, A., Tikhonovsky, M., and Kim, H.S.: Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K. Sci. Rep. 8, 11074 (2018).CrossRefGoogle ScholarPubMed
Utsunomiya, S. and Ewing, R.C.: The fate of the epsilon phase (Mo–Ru–Pd–Tc–Rh) in the UO2 of the Oklo natural fission reactors. Radiochim. Acta 94, 749 (2006).CrossRefGoogle Scholar
Bramman, J., Sharpe, R., Thom, D., and Yates, G.: Metallic fission-product inclusions in irradiated oxide fuels. J. Nucl. Mater. 25, 201 (1968).CrossRefGoogle Scholar
O’Boyle, D., Brown, F., and Dwtght, A.: Analysis of fission product ingots formed in uranium-plutonium oxide irradiated in EBR-II. J. Nucl. Mater. 35, 257 (1970).CrossRefGoogle Scholar
Kleykamp, H.: The chemical state of the fission products in oxide fuels. J. Nucl. Mater. 131, 221 (1985).CrossRefGoogle Scholar
Kleykamp, H., Paschoal, J., Pejsa, R., and Thümmler, F.: Composition and structure of fission product precipitates in irradiated oxide fuels: Correlation with phase studies in the Mo–Ru–Rh–Pd and BaO–UO2–ZrO2–MoO2 systems. J. Nucl. Mater. 130, 426 (1985).CrossRefGoogle Scholar
Kleykamp, H.: Constitution and thermodynamics of the Mo–Ru, Mo–Pd, Ru–Pd, and Mo–Ru–Pd systems. J. Nucl. Mater. 167, 49 (1989).CrossRefGoogle Scholar
Naito, K., Tsuji, T., Matsui, T., and Date, A.: Chemical state, phases and vapor pressures of fission-produced noble metals in oxide fuel. J. Nucl. Mater. 154, 3 (1988).CrossRefGoogle Scholar
Buck, E.C., Mausolf, E.J., McNamara, B.K., Soderquist, C.Z., and Schwantes, J.M.: Nanostructure of metallic particles in light water reactor used nuclear fuel. J. Nucl. Mater. 461, 236 (2015).CrossRefGoogle Scholar
Yang, T., Li, C., Zinkle, S.J., Zhao, S., Bei, H., and Zhang, Y.: Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. J. Mater. Res. 33, 3077 (2018).CrossRefGoogle Scholar
Cui, D., Rondinella, V.V., Fortner, J.A., Kropf, A.J., Eriksson, L., Wronkiewicz, D.J., and Spahiu, K.: Characterization of alloy particles extracted from spent nuclear fuel. J. Nucl. Mater. 420, 328 (2012).CrossRefGoogle Scholar
Lucuta, P.G., Verrall, R.A., Matzke, H., and Palmer, B.J.: Microstructural features of SIMFUEL—Simulated high-burnup UO2-based nuclear fuel. J. Nucl. Mater. 178, 48 (1991).CrossRefGoogle Scholar
Crum, J.V., Strachan, D., Rohatgi, A., and Zumhoff, M.: Epsilon metal waste form for immobilization of noble metals from used nuclear fuel. J. Nucl. Mater. 441, 103 (2013).CrossRefGoogle Scholar
Cui, D., Low, J., Sjoestedt, C.J., and Spahiu, K.: On Mo–Ru–Tc–Pd–Rh–Te alloy particles extracted from spent fuel and their leaching behavior under Ar and H2 atmospheres. Radiochim. Acta 92, 551 (2004).CrossRefGoogle Scholar
Yablinsky, C.A., Devanathan, R., Pakarinen, J., Gan, J., Severin, D., Trautmann, C., and Allen, T.R.: Characterization of swift heavy ion irradiation damage in ceria. J. Mater. Res. 30, 1473 (2015).CrossRefGoogle Scholar
Devanathan, R.: Molecular dynamics simulation of fission fragment damage in nuclear fuel and surrogate material. MRS Adv. 2, 1225 (2017).CrossRefGoogle Scholar
Jiang, W., Conroy, M.A., Kruska, K., Overman, N.R., Droubay, T.C., Gigax, J., Shao, L., and Devanathan, R.: Nanoparticle precipitation in irradiated and annealed ceria doped with metals for emulation of spent fuels. J. Phys. Chem. C 121, 22465 (2017).CrossRefGoogle Scholar
Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
King, D.J.M., Burr, P.A., Obbard, E.G., and Middleburgh, S.C.: DFT study of the hexagonal high-entropy alloy fission product system. J. Nucl. Mater. 488, 70 (2017).CrossRefGoogle Scholar
Huang, J.L., Li, Z., Duan, H.H., Cheng, Z.Y., Li, Y.D., Zhu, J., and Yu, R.: Formation of hexagonal-close packed (HCP) rhodium as a size effect. J. Am. Chem. Soc. 139, 575 (2017).CrossRefGoogle ScholarPubMed
Serne, R.J., Crum, J.V., Riley, B.J., and Levitskaia, T.G.: Options for the Separation and Immobilization of Technetium, PNNL-25834 (Pacific Northwest National laboratory, Richland, WA, 2016).CrossRefGoogle Scholar
Senkov, O. and Miracle, D.: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).CrossRefGoogle Scholar
King, D.J.M. and McGregor, A.J.: Alloy Search and Predict (2015). Available at: http://www.alloyasap.com.Google Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
King, D., Middleburgh, S., McGregor, A., and Cortie, M.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).CrossRefGoogle Scholar
Troparevsky, M.C., Morris, J.R., Kent, P.R., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).Google Scholar
Massalski, T.B.: Comments concerning some features of phase diagrams and phase transformations. Mater. Trans. 51, 583 (2010).CrossRefGoogle Scholar
Supplementary material: File

Devanathan et al. supplementary material

Table S1 and Figure S1

Download Devanathan et al. supplementary material(File)
File 290.6 KB