Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T13:03:29.219Z Has data issue: false hasContentIssue false

Heteroepitaxial growth of 3C–SiC film on Si(100) substrate by plasma chemical vapor deposition using monomethylsilane

Published online by Cambridge University Press:  03 March 2011

Y. Morikawa
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
M. Hirai*
Affiliation:
Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530, Japan
A. Ohi
Affiliation:
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
M. Kusaka
Affiliation:
Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530, Japan
M. Iwami
Affiliation:
Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Elliot, R.P.: Constitution of Binary Alloys (McGraw-Hill, New York, 1965), p. 227.Google Scholar
2Furusho, T., Lilov, S.K., Ohshima, S., and Nishino, S.: Crystal growth of silicon carbide in hydrogen atmosphere by sublimation close space technique. J. Cryst. Growth 237, 1235 (2002).CrossRefGoogle Scholar
3Hofmann, D., Bickermann, M., Eckstein, R., Kolbl, M., Muller, St. G., Schmitt, E., Weber, A., and Winnacker, A.: Sublimation growth of silicon carbide bulk crystals: Experimental and theoretical studies on defect formation and growth rate augmentation. J. Cryst. Growth 198, 1005 (1999).Google Scholar
4Karpov, S.Yu., Kulik, A.V., Zhmakin, I.A., Makarov, Yu.N., Mokhov, E.N., Ramm, M.G., Ramm, M.S., Roenkov, A.D., and Vodakov, Yu.A.: Analysis of sublimation growth of bulk SiC crystals in tantalum container. J. Cryst. Growth 211, 347 (2000).CrossRefGoogle Scholar
5Masri, P.: Silicon carbide and silicon carbide-based structures: The physics of epitaxy. Surf. Sci. Rep. 48, 1 (2002).CrossRefGoogle Scholar
6Furumura, Y., Doki, M., Mieno, F., Eshita, T., Suzuki, T., and Maeda, M.: Heteroepitaxial beta-SiC on Si. J. Electrochem. Soc. 135, 1225 (1988).CrossRefGoogle Scholar
7Sugii, T., Aoyama, T., and Ito, T.: Low-temperature growth of beta-SiC on Si by gas-source MBE. J. Electrochem. Soc. 137, 989 (1990).CrossRefGoogle Scholar
8Lee, K.W., Yu, K-W., Boo, J-H., Kim, Y., Hatayama, T., Kimoto, T., and Matsunami, H.: Epitaxial growth of cubic SiC films on Si substrates by high vacuum chemical vapor deposition using 1, 3-disilabutane. J. Electrochem. Soc. 144, 1474 (1997).CrossRefGoogle Scholar
9Powell, J.A., Matus, L.G., and Kuczmarski, M.A.: Growth and characterization of cubic SiC single-crystal films on Si. J. Electrochem. Soc. 134, 1558 (1987).CrossRefGoogle Scholar
10Liaw, H.P. and Davis, R.F.: Thermal stresses in heteroepitaxial beta silicon carbide thin films grown on silicon substrates. J. Electrochem. Soc. 131, 3014 (1984).CrossRefGoogle Scholar
11Nishino, S., Powell, J.A., and Will, H.A.: Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
12Nishino, S., Suhara, H., Ono, H., and Matsunami, H.: Epitaxial growth and electric characteristics of cubic Sic on silicon. J. Appl. Phys. 61, 4889 (1987).CrossRefGoogle Scholar
13Matsunami, H.: Progress in epitaxial growth of SiC. Physica B 185, 65 (1993).CrossRefGoogle Scholar
14Pirouz, P., Chorey, C.M., and Powell, J.A.: Antiphase boundaries in epitaxially grown beta-SiC. Appl. Phys. Lett. 50, 221 (1987).Google Scholar
15Shibahara, K., Nishino, S., and Matsunami, H.: Antiphase-domain-free growth of cubic SiC on Si(100). Appl. Phys. 50, 1888 (1987).Google Scholar
16Liu, C.W. and Sturm, J.C.: Low-temperature CVD growth of beta-SiC on (100) Si using methylsilane and device characteristics. J. Appl. Phys. 82, 4558 (1997).CrossRefGoogle Scholar
17Fujiwara, Y., Sakuma, E., Misawa, S., Endo, K., and Yoshida, S.: Epitaxial growth of 3C-SiC on Si by low-pressure chemical vapor deposition. Appl. Phys. 49, 388 (1986).Google Scholar
18Yasui, K., Asada, K., and Akahane, T.: Epitaxial growth of 3C-SiC films on Si substrates by triode plasma CVD using dimethylsilane. Appl. Surf. Sci. 159, 556 (2000).CrossRefGoogle Scholar
19Matsutani, T., Kiuchi, M., Takeuchi, T., Matsumoto, T., Mimoto, K., and Goto, S.: Deposition of 3C-SiC films using ECR plasma of methylsilane. Vacuum 59, 152 (2000).CrossRefGoogle Scholar
20Yasui, K., Asada, K., Maeda, T., and Akahane, T.: Growth of high quality silicon carbide films on Si by triode plasma CVD using monomethylsilane. Appl. Surf. Sci. 175, 495 (2001).CrossRefGoogle Scholar
21Nakazawa, H., Suemitsu, M., and Asami, S.: Gas-source MBE of SiC/Si using monomethylsilane. Thin Solid Films 369, 269 (2000).CrossRefGoogle Scholar
22Nishino, K., Kimoto, T., and Matsunami, H.: Epitaxial growth of 3C-SiC on alpha-SiC substrates by chemical vapor deposition. InSilicon Carbide and Related Materials edited by Spencer, M.G., Devaty, R.P., Edmond, J.A., Khan, M.A., Kaplan, R. and Rahman, M., Institute of Physics Conference Series Number 137 (IOP Publishing, Bristol and Philadelphia, 1994), p. 33.Google Scholar
23Gao, Y., Edgar, J.H., Chaudhuri, J., Cheema, S.N., Sidorov, M.V., and Braski, D.N.: Low-temperature chemical-vapor deposition of 3C-SiC films on Si(100) using SiH4-C2H4-HCl-H2. J. Cryst. Growth 191, 439 (1998).Google Scholar
24Chen, Y., Matsumoto, K., Nishio, Y., Shirafuji, T., and Nishino, S.: Heteroepitaxial growth of 3C-SiC using HMDS by atmospheric CVD. Mater. Sci. Eng. 61, 579 (1999).CrossRefGoogle Scholar
25Teker, K., Jacob, C., Chung, J., and Hong, M.H.: Thin solid films: Epitaxial growth of 3C-SiC on Si(001) using hexamethyldisilane and comparison with growth on Si(111). Thin Solid Films 371, 53 (2000).CrossRefGoogle Scholar
26Goleck, I., Reidinger, F., and Marti, J.: Single-crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition. Appl. Phys. Lett. 60, 1703 (1992).CrossRefGoogle Scholar
27Ohshita, Y.: Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas. J. Cryst. Growth 147, 111 (1995).CrossRefGoogle Scholar
28Kim, K.C. and II, C. Park: Formation mechanism of interfacial voids in the growth of SiC films on Si substrates. J. Vac. Sci. Technol. 19, 2636 (2001).Google Scholar
29Shinohara, M., Maehama, T., and Niwano, M.: Adsorption and decomposition of methylsilanes on Si(100). Appl. Surf. Sci. 162, 161 (2000).CrossRefGoogle Scholar
30Silvestrelli, P.L., Sbraccia, C., and Ancilotto, F.: J. Chem. Phys. 116, 6291 (2002).Google Scholar