Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T23:21:23.406Z Has data issue: false hasContentIssue false

The hardness and Young's modulus of bulk YBa2Cu3O7−x (1:2:3) and YBa2Cu4O8 (1:2:4) as determined by ultra low load indentation

Published online by Cambridge University Press:  31 January 2011

B.N. Lucas
Affiliation:
University of Tennessee, Knoxville, Tennessee
W.C. Oliver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6116
R.K. Williams
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6116
J. Brynestad
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6116
M.E. O'Hern
Affiliation:
Nano Instruments, Inc., Knoxville, Tennessee
Get access

Abstract

Using a highly-spatially-resolved mechanical properties microprobe, the Young's modulus and hardness of bulk YBa2Cu3O7−x (1:2:3) and YBa2Cu4O8 (1:2:4) have been determined. The Young's modulus of a superconductor is an important parameter in determining critical grain sizes above which microcracking will occur due to anisotropic thermal stresses that arise during processing. This phenomenon of microcracking has been determined to cause a decrease in the attainable critical current densities in bulk superconductors. The mechanical properties data for these two materials show that the Young's modulus of 1:2:3 is approximately 35% greater than the modulus of 1:2:4. This along with available anisotropic thermal expansion data for 1:2:3 and 1:2:4 suggests that the critical grain size for 1:2:4 is about 7 times greater than the critical grain size for microcracking in 1:2:3.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2.Dimos, D., Chaudhuri, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
3.Chaudhuri, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
4.Tkaczyk, J. E. and Lay, K. W., J. Mater. Res. 5, 1368 (1990).CrossRefGoogle Scholar
5.Heuer, A. H., Tighe, N. J., and Cannon, R. M., J. Am. Ceram. Soc. 63, 53 (1980).CrossRefGoogle Scholar
6.Doverspike, K., Hubbard, C. R., Williams, R. K., Alexander, K. B., Brynestad, J., and Kroeger, D. M., Physica C, in press.Google Scholar
7.Williams, R. K., Alexander, K. B., Brynestad, J., Henson, T. J., Kroeger, D. M., Lindemer, T. B., Marsh, G. C., and Scarbrough, J. O., accepted for publication in J. Appl. Phys.Google Scholar
8.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
9.Oliver, W. C. and Pharr, G. M., in preparation for J. Mater. Res.Google Scholar
10.Ledbetter, H. M., Austin, M. W., Kim, S. A., and Lei, Ming, J. Mater. Res. 2, 786 (1987).CrossRefGoogle Scholar
11.Block, S., Piermarini, G. J., Munro, R. G., and Wong-Ng, W., Adv. Ceram. Mater. 2 (3B), Special Issue, 601 (1987).CrossRefGoogle Scholar
12.Blendell, J. E., Chiang, C. K., Cranmer, D. C., Freiman, S. W., Fuller, E. R., Jr., Drescher-Krasicka, E., Johnson, W. L., Ledbetter, H. M., Bennett, L. H., Swartzendruber, L. J., Marinenko, R. B., Myklebust, R. L., Bright, D. S., and Newbury, D. E., Adv. Ceram. Mater. 2 (3B), Special Issue, 512 (1987).CrossRefGoogle Scholar
13. G. Chang, C.S., Burns, S. J., Goyal, A., and Funkenbusch, P. D., Proc. Am. Ceram. Soc. 2, Special Publication (1988).Google Scholar
14.Blau, P. J., DeVore, C. E., Wilson, D. F., and Keiser, J. R., ORNL/TM-11053, 1989, available from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.Google Scholar
15.Alford, N. Mc N., Birchall, J. D., Clegg, W. J., Harmer, M. A., Kendall, K., and Jones, D. H., J. Mater. Sci. 23, 761 (1988).CrossRefGoogle Scholar
16.Martinez, L., Oliver, W. C., and Williams, R. K., submitted to Physica C.Google Scholar
17.Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., and Boone, T., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
18.Williams, R. K., Brynestad, J., Henson, T. J., Kroeger, D. M., Marsh, G. C., Padgett, R. A., and Scarbrough, J. O., submitted to J. Appl. Phys.Google Scholar
19.Kroeger, D. M., Brynestad, J., Williams, R. K., Padgett, R. A., and Scarbrough, J. O., in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988), p. 521.Google Scholar
20.Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc. 73 (4), 787 (1990).CrossRefGoogle Scholar