Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Koba, Richard
and
Russell, William
1989.
Status of β-SiC, Diamond and C-BN Semiconductors; Comparison of a Si Power Fet to a Hypothetical Diamond Fet.
MRS Proceedings,
Vol. 162,
Issue. ,
Davis, Robert F.
Palmour, J. W.
and
Edmond, J. A.
1989.
Epitaxial Thin Film Growth and Device Development in Monocrystalline Alpha and Beta Silicon Carbide.
MRS Proceedings,
Vol. 162,
Issue. ,
Davis, Robert F.
1989.
Correlation Among Process Routes, Microstructures and Properties of Chemically Vapor Deposited Silicon Carbide.
MRS Proceedings,
Vol. 168,
Issue. ,
Powell, J. A.
Larkin, D. J.
Matus, L. G.
Choyke, W. J.
Bradshaw, J. L.
Henderson, L.
Yoganathan, M.
Yang, J.
and
Pirouz, P.
1990.
Growth of improved quality 3C-SiC films on 6H-SiC substrates.
Applied Physics Letters,
Vol. 56,
Issue. 14,
p.
1353.
Chaudhry, M. Iqbal
and
Wright, Robert L.
1990.
Epitaxial growth of β–SiC on Si by low-temperature chemical vapor deposition.
Journal of Materials Research,
Vol. 5,
Issue. 8,
p.
1595.
More, Karren L.
Kong†, Hua Shuang
Glass, Jeffrey T.
and
Davis, Robert F.
1990.
Electron Microscopy of Defects in Epitaxical β‐SiC Thin Films Grown on Silicon and Carbon {0001} Faces of α‐SiC Substrates.
Journal of the American Ceramic Society,
Vol. 73,
Issue. 5,
p.
1283.
Davis, Robert F.
1990.
The Physics and Chemistry of Carbides, Nitrides and Borides.
p.
589.
Wang, Yu Cheng
Kong, Hua Shuang
Glass, Jeffrey T.
Davis, Robert F.
and
More, Karren L.
1990.
Effect of Substrate Orientation on Interfacial and Bulk Character of Chemically Vapor Deposited Monocrystalline Silicon Carbide Thin Films.
Journal of the American Ceramic Society,
Vol. 73,
Issue. 5,
p.
1289.
Powell, J. A.
Larkin, D. J.
Matus, L. G.
Choyke, W. J.
Bradshaw, J. L.
Henderson, L.
Yoganathan, M.
Yang, J.
and
Pirouz, P.
1990.
Growth of high quality 6H-SiC epitaxial films on vicinal (0001) 6H-SiC wafers.
Applied Physics Letters,
Vol. 56,
Issue. 15,
p.
1442.
Palmour, J.W.
Edmond, J.A.
and
Davis, R.F.
1991.
Epitaxial thin film growth and device development in monocrystalline alpha and beta silicon carbide.
p.
16.
Roberson, Mark A.
and
Estreicher, Stefan K.
1991.
Interstitial hydrogen in cubic and hexagonal SiC.
Physical Review B,
Vol. 44,
Issue. 19,
p.
10578.
Powell, J. A.
Petit, J. B.
Edgar, J. H.
Jenkins, I. G.
Matus, L. G.
Yang, J. W.
Pirouz, P.
Choyke, W. J.
Clemen, L.
and
Yoganathan, M.
1991.
Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers.
Applied Physics Letters,
Vol. 59,
Issue. 3,
p.
333.
Pazik, J. C.
Kelner, G.
and
Bottka, N.
1991.
Epitaxial growth of β-SiC on silicon-on-sapphire substrates by chemical vapor deposition.
Applied Physics Letters,
Vol. 58,
Issue. 13,
p.
1419.
Helbig, R
1991.
SiC recent developments: material, technology, devices.
Physica Scripta,
Vol. T35,
Issue. ,
p.
194.
Choi, Byung Jin
and
Kim, Dai Ryong
1991.
Growth of silicon carbide by chemical vapour deposition.
Journal of Materials Science Letters,
Vol. 10,
Issue. 14,
p.
860.
Powell, J. A.
Petit, J. B.
Edgar, J. H.
Jenkins, I. G.
Matus, L. G.
Choyke, W. J.
Clemen, L.
Yoganathan, M.
Yang, J. W.
and
Pirouz, P.
1991.
Application of oxidation to the structural characterization of SiC epitaxial films.
Applied Physics Letters,
Vol. 59,
Issue. 2,
p.
183.
Chang, C.S.
Tsong, I.S.T.
Wang, Y.C.
and
Davis, R.F.
1991.
Scanning tunneling microscopy and spectroscopy of cubic β-SiC(111) surfaces.
Surface Science,
Vol. 256,
Issue. 3,
p.
354.
Davis, R.F.
Kelner, G.
Shur, M.
Palmour, J.W.
and
Edmond, J.A.
1991.
Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide.
Proceedings of the IEEE,
Vol. 79,
Issue. 5,
p.
677.
Okoshi, M.
Toyoda, K.
and
Murahara, M.
1991.
Excimer Laser Induced Modification of Teflon Surface into Silicon Carbide-Like.
MRS Proceedings,
Vol. 236,
Issue. ,
Wang, Y. C.
and
Davis, R. F.
1991.
Growth rate and surface microstructure in α(6H)–SiC thin films grown by chemical vapor deposition.
Journal of Electronic Materials,
Vol. 20,
Issue. 7,
p.
869.